• Title/Summary/Keyword: component deformation-based

Search Result 101, Processing Time 0.035 seconds

Deformation Characteristics of Miniature Tensile Specimens of a SA 508 C1.3 Reactor Pressure Vessel Steel

  • Byun, Thak-Sang;Chi, Se-Hwan;Hong, Jun-Hwa;Jeong, Ill-Seok;Hong, Sung-Yull
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.182-187
    • /
    • 1996
  • Deformation characteristics of miniature plate tensile specimens have been studied to develop the thickness requirement and a correlation to estimate the mechanical properties of bulk material from miniature specimen data. The material used was a SA 508 C1.3 reactor pressure vessel steel and the thicknesses of miniature tensile specimens varied from ().12 m to 2 mm. The effects of thickness on the tensile deformation properties such as strength, ductility, and necking characteristics were analyzed. The yield and ultimate tensile strengths were independent of specimen thickness when the thickness was larger than about 0.2 mm. The uniform and total elongations decreased as the specimen thickness decreased. It was also observed that the uniform strain component in the width direction decreased with decrease in the specimen thickness, however, that in the thickness direction was rather constant in total thickness range studied. Based on this observation and a relationship between the necking angle and the ratio between strain components, a correlation between the uniform elongations of miniature specimen and standard specimen was derived. The uniform elongations calculated by this new correlation agreed well with the measured values.

  • PDF

A Study on the Ultimate Strength Behaviour According to the Boundary Condition of a Plate under Thrust (면내하중을 받는 판의 경계조건에 따른 최종강도거동에 관한 연구)

  • 고재용;박주신;최익창;이계희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.557-564
    • /
    • 2002
  • One of the primary factors like plate structure In ship is redundancy structure that is comparable with ocean structure and frame structure. The more component material becomes buckling collapsed locally the less structure stiffness becomes accordingly. As a result, by increasing the load distribution of any other subsidiary structure continually component member collapses, therefore the structure could be in danger of collapse. So, in order to interpret this phenomenon precisely, the study on boundary condition of the ship's Plate and post-buckling analysis must be considered. In this study, the rectangular plate is compressed by the in-plane load. Buckling & Ultimate strength characteristics we applied to be the elasto-plasticity large deformation by F.E.M. On this basis, elasto-plasticity of the plain plate are investigated. This study proved elasto-plasticity behaviour of tile ship's plate In accordance with boundary condition based on the series analysis In case of the compressive load operation.

  • PDF

A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells

  • Allam, Othmane;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Mahmoud, S.R.;Adda Bedia, E.A.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.185-201
    • /
    • 2020
  • This research is devoted to investigate the bending and free vibration behaviour of laminated composite/sandwich plates and shells, by applying an analytical model based on a generalized and simple refined higher-order shear deformation theory (RHSDT) with four independent unknown variables. The kinematics of the proposed theoretical model is defined by an undetermined integral component and uses the hyperbolic shape function to include the effects of the transverse shear stresses through the plate/shell thickness; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by employing the principle of virtual work and solved via Navier-type analytical procedure. To verify the validity and applicability of the present refined theory, some numerical results related to displacements, stresses and fundamental frequencies of simply supported laminated composite/sandwich plates and shells are presented and compared with those obtained by other shear deformation models considered in this paper. From the analysis, it can be concluded that the kinematics based on the undetermined integral component is very efficient, and its use leads to reach higher accuracy than conventional models in the study of laminated plates and shells.

Shape Deformation Monitoring for VLBI Antenna Using Close-Range Photogrammetry and Total Least Squares (근접사진측량과 Total Least Squares를 활용한 VLBI 안테나 형상 변형 모니터링 방안 연구)

  • Kim, Hyuk Gil;Yun, Hong Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • In order to maintain the precise positioning accuracy of the VLBI system, the shape deformation found in antenna structure should be monitored. In fact, reduced the antenna gaining of an electromagnetic wave reception from the Quasar has been particularly expected due to the shape deformation of main reflector in VLBI antenna. Therefore, the importance of shape deformation monitoring for the main reflector has been significantly increased. The main reflector has come out as the high potential for deformation in the VLBI structure. The fact has led us to investigate the monitoring system for the main reflector based on the efficient algorithm in accordance with the close-range photogrammetry, which of expecting to be utilized as the continuous and automated monitoring system for the structure deformation in the near future. Ten fitting lines were estimated with the TLS for feature points of distributed in all directions from the main reflector. The resultant intersection point of estimated fitting lines was calculated by using the nearest point calculation algorithm, based on those non-intersection lines. Following to the intuitive basis for the time series analysis, the results was able to provide the calculation of numerical variation in the intersection point, which is represented in 3-axis,; that we are expecting to open the way for predicting a deformation rate as well as deformation direction

Optimization of Stress and Deformation of Culvert Gate by using RSM and NSGA-II (반응표면법 및 비지배 분류 유전자 알고리즘을 이용한 취배수문의 응력 및 변형 최적화)

  • Kim, Dong Soo;Lee, Jongsoo;Choi, Ha-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • A valve is a marine structure that is subjected to multiple seawater loads. Therefore, it is necessary to define the kind of loads applied to it to confirm whether the structure has sufficient strength. In this research, we aimed to find the optimal solution for the stress and deformation of valves under various loads. We first selected design variables and implement a finite element analysis according to changes in the thickness of each component of a valve based on a central composite design. Next we developed a regression model of the response surface. Using this model, we calculated the optimal objective value based on NSGA-II. Finally, to confirm the correspondence between the optimal objective value and the real FEM value, we compared the optimal result and structural analysis result to verify the performance of NSGA-II.

Investigation of Burst Pressures in PWR Primary Pressure Boundary Components

  • Namgung, Ihn;Giang, Nguyen Hoang
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.236-245
    • /
    • 2016
  • In a reactor coolant system of a nuclear power plant (NPP), an overpressure protection system keeps pressure in the loop within 110% of design pressure. However if the system does not work properly, pressure in the loop could elevate hugely in a short time. It would be seriously disastrous if a weak point in the pressure boundary component bursts and releases radioactive material within the containment; and it may lead to a leak outside the containment. In this study, a gross deformation that leads to a burst of pressure boundary components was investigated. Major components in the primary pressure boundary that is structurally important were selected based on structural mechanics, then, they were used to study the burst pressure of components by finite element method (FEM) analysis and by number of closed forms of theoretical relations. The burst pressure was also used as a metric of design optimization. It revealed which component was the weakest and which component had the highest margin to bursting failure. This information is valuable in severe accident progression prediction. The burst pressures of APR-1400, AP1000 and VVER-1000 reactor coolant systems were evaluated and compared to give relative margins of safety.

Progressive collapse analysis of steel frame structure based on the energy principle

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.553-571
    • /
    • 2016
  • The progressive collapse potential of steel moment framed structures due to abrupt removal of a column is investigated based on the energy principle. Based on the changes of component's internal energy, this paper analyzes structural member's sensitivity to abrupt removal of a column to determine a sub-structure resisting progressive collapse. An energy-based structural damage index is defined to judge whether progressive collapse occurs in a structure. Then, a simplified beam damage model is proposed to analyze the energies absorbed and dissipated by structural beams at large deflections, and a simplified modified plastic hinges model is developed to consider catenary action in beams. In addition, the correlation between bending moment and axial force in a beam during the whole deformation development process is analyzed and modified, which shows good agreement with the experimental results.

Densification Mechanism of Warm Compaction for Iron-based Powder Materials

  • Qu, Shengguan;Li, Yuanyuan;Xia, Wei;Chen, Weiping
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.201-202
    • /
    • 2006
  • An apparatus measuring changes of various forces directly and continuously was developed by a way of direct touch between powders and transmitting force component, which can be used to study forces state of powders during warm compaction. Using the apparatus, warm compaction processes of iron-based powder materials containing different lubricants at different temperatures were studied. Results show that densification of the iron-based powder materials can be divided into four stages, in which powder movement changes from robustness to weakness, while its degree of plastic deformation changes from weakness to robustness.

  • PDF

An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates

  • Abbas, Soufiane;Benguediab, Soumia;Draiche, Kada;Bakora, Ahmed;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.365-380
    • /
    • 2020
  • The focus of this paper is to develop an analytical approach based on an efficient shear deformation theory with stretching effect for bending stress analysis of cross-ply laminated composite plates subjected to transverse parabolic load and line load by using a new kinematic model, in which the axial displacements involve an undetermined integral component in order to reduce the number of unknowns and a sinusoidal function in terms of the thickness coordinate to include the effect of transverse shear deformation. The present theory contains only five unknowns and satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without using any shear correction factors. The governing differential equations and its boundary conditions are derived by employing the static version of principle of virtual work. Closed-form solutions for simply supported cross-ply laminated plates are obtained applying Navier's solution technique, and the numerical case studies are compared with the theoretical results to verify the utility of the proposed model. Lastly, it can be seen that the present outlined theory is more accurate and useful than some higher-order shear deformation theories developed previously to study the static flexure of laminated composite plates.

Evaluation of the Bonding Behavior of the Rehabilitation Method Applying Carbon Fiber Subjected to the Variation of Environmental Condition (탄소섬유 접착 보강공법의 환경변화에 따른 부착특성 평가)

  • Han, Cheon Goo;Byun, Hang Yong;Park, Yong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper provides the test results of bonding behavior of the interface between concrete substrate and carbon fiber in the rehabilitation method applying carbon fiber with epoxy based resin adhesive. The difference in each components was gradually increased subjected to the repetition of temperature variation, regardless of the strength of the substrate concrete, while the ultrasonic interface between each component occurred. An increase in difference of the temperature resulted in a decrease in bond strength of each component. Associated failure mode was shown to be interfacial failure and substrate concrete failure. No remarkable changes were found in the deformation and ultrasonic velocity of each component until the four cycles of the dry and moisture test. Hence, the moisture condition may not affect the bonding behavior of each component. After the repetition of dry and moisture test, corresponding bond strength was reduced to 40% of that before test. For the effect of freeze and thaw test, the cycle of freeze and thaw within 4 cycles resulted in debonding of each component.