• 제목/요약/키워드: component deformation

검색결과 351건 처리시간 0.025초

디프드로잉시 AA1050판재의 초기 집합조직 거동에 관한 연구 (Behavior of Initial Texture During Deep Drawing of AA1050 Sheets)

  • 최시훈;조재형;오규환
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.570-574
    • /
    • 1998
  • The texture evolution during deep drawing of AA1050 sheets was experimentally investigated and the lattice rotation rate was predicted using rate sensitive model with full constraints boundary conditions. The measured textures are dependent on the amount of the flange deformation and the initial crystal orientations. In the specimen parallel to RD the initial crystal orientations and the D component rotated toward the Cu component and the initial crystal orientations along the $\alpha$ fiber rotated toward the G {1 1 0}<0 0 1> and P {1 1 0} <1 1 1> components during deep drawing. In the specimen parallel to $45{\circ}$ with respect to RD the initial crystal orientations around the D component rotated about ND and the initial crystal orientations along the ${\alpha}$ fiber also rotated toward the (1 1 0) [2 3] and (1 1 0)[2 7] components about ND. In the specimen parallel to TD. the initial crystal orientations around the D component rotated toward the rotated cube and the initial crystal orientations along the ${\alpha}$ fiber rotated toward the {1 1 0} <1 1 3> component.

  • PDF

연소기 헤드용 스테인리스강의 저온 변형 거동 (Low-Temperature Deformation Behavior of a Stainless Steel for the Thrust Chamber Mixing Head)

  • 이금오;류철성;최환석
    • 한국항공우주학회지
    • /
    • 제37권11호
    • /
    • pp.1096-1103
    • /
    • 2009
  • 연소기 헤드부는 극저온 유체인 액체산소가 고압으로 작동하고, 동시에 연소기의 추력으로 인한 하중을 받기 때문에, 극저온에서의 헤드의 구조 안정성 해석을 위한 재료의 변형 거동 예측은 매우 중요하다. 헤드부의 변형 거동을 예측하기 위해 재료의 저온에서의 인장 변형 거동을 묘사할 수 있는 구성 방정식을 Kocks의 전위 에너지 장벽 모델을 바탕으로 열적 요소와 비열적 요소의 결합으로 구성하였으며, 극저온에서 장애물들의 증가로 인한 응력의 열적 요소의 증가를 묘사하기 위해서, 장애물로 인해 발생하는 응력 요소를 Ramberg-Osgood 형태의 식으로 구성하였다. 본 모델은 극저온과 상온의 넓은 온도 영역에서 재료의 변형 거동을 잘 예측하였다.

FEGM을 이용한 자동차용 플라스틱의 진응력-변형률 선도 도출 (Determination of True Stress-Strain Curves of Auto-body Plastics Using FEGM)

  • 박충회;김진성;허훈;안창남;최석진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2009
  • The plastics are widely utilized in the inside of vehicles. The dynamic tensile characteristics of auto-body plastics are important in a prediction of deformation mode of the plastic component which undergoes the high speed deformation during car crash. This paper is concerned with the dynamic tensile characteristics of the auto-body plastics at intermediate strain rates. Quasi-static tensile tests were carried out at the strain rate ranged from 0.001/sec to 0.01/sec using the static tensile machine(Instron 5583). Dynamic tensile tests were carried out at the strain rate ranged from 0.1/sec to 100/sec using the high speed material testing machine developed. Conventional extensometry method is no longer available for plastics, since the deformation of plastic is accompanied with localized deformation. In this paper, quasi-static and dynamic tensile tests were performed using ASTM IV standard specimens with grids and images from a high speed camera were analyzed for strain measurement. True stress-strain relations and the actual strain rates at each deformation step were obtained by processing load data and deformation images, assuming the plastics to deform uniformly in each grid.

  • PDF

Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminium alloy

  • Ullah, Himayat;Ullah, Baseer;Muhammad, Riaz
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Shot peening is a cold surface treatment employed to induce residual stress field in a metallic component beneficial for increasing its fatigue strength. The experimental investigation of parameters involved in shot peening process is very complex as well as costly. The most attractive alternative is the explicit dynamics finite element (FE) analysis capable of determining the shot peening process parameters subject to the selection of a proper material's constitutive model and numerical technique. In this study, Ansys / LS-Dyna software was used to simulate the impact of steel shots of various sizes on an aluminium alloy plate described with strain rate dependent elasto-plastic material model. The impacts were carried out at various incident velocities. The influence of shot velocity and size on the plastic deformation, compressive residual stress and force-time response were investigated. The results exhibited that increasing the shot velocity and size resulted in an increase in plastic deformation of the aluminium target. However, a little effect of the shot velocity and size was observed on the magnitude of target's subsurface compressive residual stress. The obtained results were close to the published ones, and the numerical models demonstrated the capability of the method to capture the pattern of residual stress and plastic deformation observed experimentally in aluminium alloys. The study can be quite helpful in determining and selecting the optimal shot peening parameters to achieve specific level of plastic deformation and compressive residual stress in the aluminium alloy parts especially compressor blades.

자동차 차체 조립공장에서 주성분 분석의 응용 : 사례 연구 (Application of Principal Component Analysis in Automobile Body Assembly : Case Study)

  • 이명득;임익성;김은정
    • 산업경영시스템학회지
    • /
    • 제31권3호
    • /
    • pp.125-130
    • /
    • 2008
  • 이 논문은 자동차 차체 조립과정에서, 품질관리의 일환으로써, 비접촉 자동측정시스템을 이용하여 검사해야 하는 수많은 비독립적인 검사점을 다변량분산분석과 주성분분석을 이용하여 효율적으로 검사점을 감소시키는 방법을 설명하고 있다. 이 연구의 목적은 다변량분산분석, 주성분 분석의 개념과 이러한 기법들을 산업체 제조분야에서 응용하는 방법을 설명하여 독자의 사례 응용 이해를 돕는데 있으며, 또한 특히 주성분분석을 이용하여 수 많은 비독립적인 검사점을 어떻게 유효하게 줄여나가는지를 보여주고자 한다. 독자의 이해를 돕기 위하여 위와 같은 절차를 순서대로 설명하였으며, 실제 자동차 조립공장에서 발생하는 사례를 수치 예를 들어 설명하였다.

A component method model for blind-bolts with headed anchors in tension

  • Pitrakkos, Theodoros;Tizani, Walid
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1305-1330
    • /
    • 2015
  • The successful application of the component-based approach - widely used to model structural joints - requires knowledge of the mechanical properties of the constitutive joint components, including an appropriate assembly procedure to derive the joint properties. This paper presents a component-method model for a structural joint component that is located in the tension zone of blind-bolted connections to concrete-filled tubular steel profiles. The model relates to the response of blind-bolts with headed anchors under monotonic loading, and the blind-bolt is termed the "Extended Hollo-bolt". Experimental data is used to develop the model, with the data being collected in a manner such that constitutive models were characterised for the principal elements which contribute to the global deformability of the connector. The model, based on a system of spring elements, incorporates pre-load and deformation from various parts of the blind-bolt: (i) the internal bolt elongation; (ii) the connector's expanding sleeves element; and (iii) the connector's mechanical anchorage element. The characteristics of these elements are determined on the basis of piecewise functions, accounting for basic geometrical and mechanical properties such as the strength of the concrete applied to the tube, the connection clamping length, and the size and class of the blind-bolt's internal bolt. An assembly process is then detailed to establish the model for the elastic and inelastic behaviour of the component. Comparisons of model predictions with experimental data show that the proposed model can predict with sufficient accuracy the response of the component. The model furthers the development of a full and detailed design method for an original connection technology.

Measurement of Time-Series Surface Deformation at New Orleans Using Small Baseline Subset (SBAS) Method

  • Jo, Min-Jeong;Eom, Jin-Ah;Won, Joong-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.49-52
    • /
    • 2008
  • New Orleans located in the estuary of the Mississippi River was attacked by Hurricane Katrina and suffered big flood on August 2005. Since unconsolidated Holocene to middle Miocene strata is the main basement rocks, land subsidence has been occurred steadily due to soil compaction and normal faulting. It was reported that the maximum subsidence rate from 2002 to 2005 was -29 mm/yr. Many studies in the area have been carried out for understanding the subsiding and potential risks caused by ground subsidence are weighted by the fact that a large area of the city is located below the mean sea level. A small baseline subset (SBAS) method is applied for effectively measuring time-series LOS (Line-of sight) surface deformation from differential synthetic aperture radar interferograms in this study. The time-series surface deformation at New Orleans was measured from RADARSAT-1 SAR images. The used dataset consists of twenty-one RADARSAT-1 fine beam mode images on descending orbits from February 2005 to February 2007 and another twenty-one RADARSAT-1 standard beam mode images on ascending orbits from January 2005 to February 2007. From this dataset, 25 and 38 differential interferograms on descending and ascending orbits were constructed, respectively. The vertical and horizontal components of surface deformation were extracted from ascending and descending LOS surface deformations. The result from vertical component of surface deformation indicates that subsidence is not significant with a mean rate of -3.1${\pm}$3.2 mm/yr.

  • PDF

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

일반 크리프 거동을 고려한 균열 구조물 C*-적분 예측 (Estimation of C*-Integral for Defective Components with General Creep-Deformation Behaviors)

  • 김영진;김진수;김윤재
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.795-802
    • /
    • 2002
  • For assessing significance of a defect in a component operating at high (creeping) temperatures, accurate estimation of fracture mechanics parameter, $C^{*}$-integral, is essential. Although the J estimation equation in the GE/EPRl handbook can be used to estimate the $C^{*}$-integral when the creep -deformation behavior can be characterized by the power law creep, such power law creep behavior is a very poor approximation for typical creep behaviors of most materials. Accordingly there can be a significant error in the $C^{*}$-integral. To overcome problems associated with GE/EPRl approach, the reference stress approach has been proposed, but the results can be sometimes unduly conservative. In this paper, a new method to estimate the $C^{*}$-integral for deflective components is proposed. This method improves the accuracy of the reference stress approach significantly. The proposed calculations are then validated against elastic -creep finite element (FE) analyses for four different cracked geometries following various creep -deformation constitutive laws. Comparison of the FE $C^{*}$-integral values with those calculated from the proposed method shows good agreements.greements.

탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석 (Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes)

  • 윤정환;김종봉;양동열;정관수
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF