• 제목/요약/키워드: component and system fragility

검색결과 18건 처리시간 0.023초

다중기기 취약도곡선의 지진상관계수 조합 절차 (Combination Procedure for Seismic Correlation Coefficient in Fragility Curves of Multiple Components)

  • 김정한;김시영;최인길
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.141-148
    • /
    • 2020
  • For the important safety system, two or more units of identical equipment or redundant components with similar function were installed to prevent abnormal failure. If the failure probability of such equipment is independent, this redundancy could increase the system safety remarkably. However, if the failure of each component is highly correlated by installing in a structure or experiencing an earthquake event, the expected redundancy effect will decrease. Therefore, the seismic correlation of the equipment should be evaluated quantitatively for the seismic probabilistic safety assessment. The correlation effect can be explained in the procedure of constructing fragility curves. In this study, several methodologies to quantify the seismic correlation in the failure probability calculation for multiple components were reviewed and two possible ways considering the realistic situation were selected. Simple examples were tested to check the applicability of these methods. The conversion method between these two methods was suggested to render the evaluation using the advantages of each method possible.

비선형 유한요소해석을 이용한 CANDU형 격납건물의 내압취약도 평가 (Assessment of the Internal Pressure Fragility of the CANDU Type Containment Buildings using Nonlinear Finite Element Analysis)

  • 함대기;최인길;이홍표
    • 한국전산구조공학회논문집
    • /
    • 제23권4호
    • /
    • pp.445-452
    • /
    • 2010
  • CANDU형 격납건물에 대하여 극한내압하중에 대한 확률론적 취약도 평가를 수행하였다. 격납건물 성능의 불확실성은 가동중 검사 결과를 통해 얻어진 재료 물성치 중앙값과 텐던 긴장력 중앙값을 적용하여 고려하였다. 격납건물은 개구부를 고려하여 3차원 유한요소로 모델링하였으며, 확률론적 취약도 평가를 위하여 대규모의 비선형 유한요소해석 모델을 적용하기에 적합한 효율적인 취약도 평가기법을 개발하였다. 월성 1호기 격납건물에 대한 물성치를 사용하였다. 개발된 새로운 취약도 평가기법을 도입하여 각각의 파괴모드에 대한 취약도 평가를 수행하였으며, 파괴모드 별, 신뢰도 수준별 취약도 곡선을 도출하였다. 벽체 중단부가 극한내압발생으로 인한 방사능물질 누출에 가장 취약한 것으로 나타났다.

지진 확률론적 리스크 평가를 위한 샘플링기반 접근법 (Sampling-based Approach for Seismic Probabilistic Risk Assessment)

  • 곽신영;임승현;박준희;최인길
    • 한국전산구조공학회논문집
    • /
    • 제33권2호
    • /
    • pp.129-136
    • /
    • 2020
  • 본 연구에서 기기 지진취약도 정보의 부분 종속 관계를 정확하게 고려할 수 있는 샘플링 기반 지진 확률론적 리스크 평가 정량화 기법을 개발하였다. 구체적으로 두 가지 대표적 방법론인 EPRI 지진취약도 입력기반 정량화 방법과 JAERI 지진취약도 입력기반 정량화 기법의 장점을 결합하여 리스크 정량화 방법를 제안하였다. 본 연구에서 제안하는 방법의 가장 중요한 특징은 EPRI 지진취약도 입력을 JAERI 지진취약도 입력 공간으로 치환하여 샘플링 방법으로 SPRA 수행하는 것에 있다. 제안된 샘플링기반 접근법을 간단한 예제부터 실제 원전의 지진 확률론적 리스크 평가 문제에 적용한 결과, 본 연구에서 제안하는 방법이 정해에 가까운 시스템 지진취약도 및 지진리스크 값을 산출함을 확인할 수 있었다. 그러므로 본 연구에서 제안하는 방법론은 기존의 SPRA 정량화 방법이 다룰 수 없는 시스템 내 부분 종속 조건을 고려하여 지진 리스크를 정확하게 평가할 수 있는 유용한 도구로 활용될 수 있을 것이라 기대한다.

Performance-based earthquake engineering methodology for seismic analysis of nuclear cable tray system

  • Huang, Baofeng
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2396-2406
    • /
    • 2021
  • The Pacific Earthquake Engineering Research (PEER) Center has been developing a performance-based earthquake engineering (PBEE) methodology, which is based on explicit determination of performance, e.g., monetary losses, in a probabilistic manner where uncertainties in earthquake ground motion, structural response, damage estimation, and losses are explicitly considered. To carry out the PEER PBEE procedure for a component of the nuclear power plant (NPP) such as the cable tray system, hazard curve and spectra were defined for two hazard levels of the ground motions, namely, operation basis earthquake, and safe shutdown earthquake. Accordingly, two sets of spectral compatible ground motions were selected for dynamic analysis of the cable tray system. In general, the PBEE analysis of the cable tray in NPP was introduced where the resulting floor motions from the time history analysis (THA) of the NPP structure should be used as the input motion to the cable tray. However, for simplicity, a finite element model of the cable tray was developed for THA under the effect of the selected ground motions. Based on the structural analysis results, fragility curves were generated in terms of specific engineering demand parameters. Loss analysis was performed considering monetary losses corresponding to the predefined damage states. Then, overall losses were evaluated for different damage groups using the PEER PBEE methodology.

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • 제7권4호
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

Decision-making of alternative pylon shapes of a benchmark cable-stayed bridge using seismic risk assessment

  • Akhoondzade-Noghabi, Vahid;Bargi, Khosrow
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.583-607
    • /
    • 2016
  • One of the main applications of seismic risk assessment is that an specific design could be selected for a bridge from different alternatives by considering damage losses alongside primary construction costs. Therefore, in this paper, the focus is on selecting the shape of pylon, which is a changeable component in the design of a cable-stayed bridge, as a double criterion decision-making problem. Different shapes of pylons include H, A, Y, and diamond shape, and the two criterion are construction costs and probable earthquake losses. In this research, decision-making is performed by using developed seismic risk assessment process as a powerful method. Considering the existing uncertainties in seismic risk assessment process, the combined incremental dynamic analysis (IDA) and uniform design (UD) based fragility assessment method is proposed, in which the UD method is utilized to provide the logical capacity models of the structure, and the IDA method is employed to give the probabilistic seismic demand model of structure. Using the aforementioned models and by defining damage states, the fragility curves of the bridge system are obtained for the different pylon shapes usage. Finally, by combining the fragility curves with damage losses and implementing the proposed cost-loss-benefit (CLB) method, the seismic risk assessment process is developed with financial-comparative approach. Thus, the optimal shape of the pylon can be determined using double criterion decision-making. The final results of decision-making study indicate that the optimal pylon shapes for the studied span of cable-stayed bridge are, respectively, H shape, diamond shape, Y shape, and A shape.

Seismic Retrofit Assessment of Different Bracing Systems

  • Sudipta Chakraborty;Md. Rajibul Islam;Dookie Kim;Jeong Young Lee
    • Architectural research
    • /
    • 제25권1호
    • /
    • pp.1-9
    • /
    • 2023
  • Structural ageing influences the structural performance in a negative way by reducing the seismic resilience of the structure which makes it a major concern around the world. Retrofitting is considered to be a pragmatic and feasible solution to address this issue. Numerous retrofitting techniques are devised by researchers over the years. The viability of using steel bracings as retrofitting component is evaluated on a G+30 storied building model designed according to ACI318-14 and ASCE 7-16. Four different types of steel bracing arrangements (V, Inverted V/ Chevron, Cross/ X, Diagonal) are assessed in the model developed in commercial nu-merical analysis software while considering both material and geometric nonlinearities. Reducing displacement and cost in the structures indicates that the design is safe and economical. Therefore, the purpose of this article is to find the best bracing system that causes minimum displacement, which indicates maximum lateral stiffness. To evaluate the seismic vulnerability of each system, incremental dynamic analysis was conducted to develop fragility curves, followed by the formation of collapse margin ratio (CMR) as stipulated in FEMA P695 and finally, a cost estimation was made for each system. The outcomes revealed that the effects of ge-ometric nonlinearity tend to evoke hazardous consequences if not considered in the structural design. Probabilistic seismic and economic probes indicated the superior performance of V braced frame system and its competency to be a germane technique for retrofitting.

석고 패널이 부착된 천장 시스템의 내진성능 평가를 위한 3축 진동실험 (Triaxial Shake Table Test about Seismic Performance of Ceiling System with Gypsum Panels)

  • 박해용;전법규;김재봉;김민욱
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.143-153
    • /
    • 2019
  • In this study, a full scale 3-axes shake table test for M-bar and T-bar type ceilings commonly used in the country was conducted. Through damage inspection during the test, seismic performance of ceilings according to variables, such as clearance between wall mold and ceiling as well as existence of facilities, was evaluated. A test frame consisted of square hollow section members was used for the shake table test. The experimental method was performed as a fragility test using required response spectrum described in ICC-ES AC156. In the case of architectural nonstructural component that contain ceilings, it mainly is evaluated the performance by post-test visual inspection. For the evaluation of seismic performance of ceilings, this study classified and defined damaged items for targeted ceiling system referring to illustrative damage according to nonstructural performance levels accordance with ASCE 41 and previous studies. And proposed illustrative damage items classification was utilized to compare the degree of the damage according to experimental variables. The experiment results confirmed that differences in boundary conditions due to the clearance at wall mold and the installation of facilities had a significant effect on the seismic performance of the ceiling.