• Title/Summary/Keyword: compliant structure

Search Result 81, Processing Time 0.025 seconds

Miniature Staircase-Shaped Wideband MIMO Antenna with Excellent Isolation, Compliant to the SAR Standard (SAR규격을 만족하는 우수한 격리도의 소형 계단구조 광대역 MIMO 안테나)

  • Kahng, Kyungseok;Yang, In-Kyu;Kahng, Sungtek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1413-1420
    • /
    • 2013
  • This paper proposes a novel compact MIMO antenna which has miniaturized radiators and their row correlation coefficient, working for the LTE mobile communication, and its SAR is observed. Each of the proposed radiators has a shape of staircase and the bandwidth is twice larger than the conventional PIFA as 600MHz(21%) in 2.5 GHz - 3.15 GHz. And the area of the radiators is $16.5mm{\times}9.7mm$ proper for a handheld device. Also, by adding a planar mushroom decoupling structure between the radiators, the isolation is improved. The design has been carried out using the commercial full-wave time-domain EM solver and the finalized MIMO antenna has the return loss less than -10 dB in the LTE band, the isolation better than 20 dB and the efficiency more than 90% with the gain of 4.3 dB. Regarding the SAR of the antenna, it is observed that the average SAR value of 1g is estimated as 1.37W/Kg, which is lower than the SAR standard.

Trajectory Tracking Control of a Real Redundant Manipulator of the SCARA Type

  • Urrea, Claudio;Kern, John
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.215-226
    • /
    • 2016
  • Modeling, control and implementation of a real redundant robot with five Degrees Freedom (DOF) of the SCARA (Selective Compliant Assembly Robot Arm) manipulator type is presented. Through geometric methods and structural and functional considerations, the inverse kinematics for redundant robot can be obtained. By means of a modification of the classical sliding mode control law through a hyperbolic function, we get a new algorithm which enables reducing the chattering effect of the real actuators, which together with the learning and adaptive controllers, is applied to the model and to the real robot. A simulation environment including the actuator dynamics is elaborated. A 5 DOF robot, a communication interface and a signal conditioning circuit are designed and implemented for feedback. Three control laws are executed in: a simulation structure (together with the dynamic model of the SCARA type redundant manipulator and the actuator dynamics) and a real redundant manipulator of the SCARA type carried out using MatLab/Simulink programming tools. The results, obtained through simulation and implementation, were represented by comparative curves and RMS indices of the joint errors, and they showed that the redundant manipulator, both in the simulation and the implementation, followed the test trajectory with less pronounced maximum errors using the adaptive controller than the other controllers, with more homogeneous motions of the manipulator.

Design and demonstrators testing of adaptive airfoils and hingeless wings actuated by shape memory alloy wires

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.89-114
    • /
    • 2007
  • Two aspects of the design of a small-scale smart wing are addressed in this work, related to the ability of the wing to modify its cross section assuming the shape of two different airfoils and to the possibility of deflecting the profiles near the trailing edge in order to obtain hingeless control surfaces. The actuation is provided by one-way shape memory alloy wires eventually coupled to springs, Shape Memory Alloys (SMAs) being among the most promising materials for this kind of applications. The points to be actuated along the profiles and the displacements to be imposed are selecetd so that they satisfactorily approximate the change from an airfoil to the other and to result in an adequate deflection of the control surface; the actuators and their performances are designed so that an adequate wing stiffness is guaranteed, in order to prevent excessive deformations and undesired airfoil shape variations due to aerodynamic loads. The effect of the pressure distributions, calculated by way of the XFOIL software, and of the actuators loads, is estimated by FE analyses of the loaded wing. Two prototypes are then realised incorporating the variable airfoil and the hingeless aileron features respectively, and the verification of their shapes in both the actuated and non-actuated states, supported by image analysis techniques, confirms that interesting results are achievable with the proposed lay out and design considerations.

Comparative numerical analysis for cost and embodied carbon optimisation of steel building structures

  • Eleftheriadis, Stathis;Dunant, Cyrille F.;Drewniok, Michal P.;Rogers-Tizard, William;Kyprianou, Constantinos
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.385-404
    • /
    • 2018
  • The study investigated an area of sustainable structural design that is often overlooked in practical engineering applications. Specifically, a novel method to simultaneously optimise the cost and embodied carbon performance of steel building structures was explored in this paper. To achieve this, a parametric design model was developed to analyse code compliant structural configurations based on project specific constraints and rigorous testing of various steel beam sections, floor construction typologies (precast or composite) and column layouts that could not be performed manually by engineering practitioners. Detailed objective functions were embedded in the model to compute the cost and life cycle carbon emissions of the different material types used in the structure. Results from a comparative numerical analysis of a real case study illustrated that the proposed optimisation approach could guide structural engineers towards areas of the solution space with realistic design configurations, enabling them to effectively evaluate trade-offs between cost and carbon performance. This significant contribution implied that the optimisation model could reduce the time required for the design and analysis of multiple structural configurations especially during the early stages of a project. Overall, the paper suggested that the deployment of automated design procedures can enhance the quality as well as the efficiency of the optimisation analysis.

Design of Vane Rotary Air Compressor for Fuel Cell Application (연료전지용 베인 로타리 공기 압축기 설계)

  • Kim, Hyun-Jin;Lee, Yong-Ho;Kim, Ho-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • Air supply is required to the cathode of fuel cells for the provision of oxygen to produce electricity through chemical reaction with hydrogen in the cell, and supplied air should be free of impurities such as oil mist and tiny particles separated from sliding surfaces. Hence, air compressor for fuel cell air supply must be oil-less type and have no severe sliding surfaces inside. This paper introduces the concept of single-vane type rotary air compressor whose structure is particularly suitable for the fuel cell application: sliding action of the vane against the cylinder wall, which causes severe friction in the conventional vane rotary compressors, is made to be prevented by attaching the vane to the driving shaft with the compliant device between the vane and the rotor in this new design. For 2 kW fuel cell application, preliminary design has been carried out, and its performance has been estimated by using computer simulation program: for discharge pressure of 2 bar, the volumetric, adiabatic, and mechanical efficiencies are calculated to be 82.5%, 92.5%, and 96.3%, respectively.

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate (무한 평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Oh, Joon-Seok;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.168-176
    • /
    • 2007
  • The mixture sound speed in bubbly fluids is highly dispersive due to differences of the density and compressibility between bubbles and fluids. The dispersion range in bubbly fluids expands to a higher frequency than the resonance frequency of an air bubble. A theoretical model was developed to compute the reduction of radiation noise that is generated by a force applied on an infinite flat plate using a bubble layer as a compliant baffle. For evaluating the effectiveness of a bubble layer in reducing the structure-borne noise of an infinite elastic plate, the noise reduction levels for various parameters such as the thickness of bubble layers, the volume fractions and the distribution types of bubbly fluids are calculated numerically. The noise reduction effect of an air bubble layer on an infinite flat plate is considerable level and similar to the tendency of dispersion of bubbly fluids. It is recommended that the thickness of a bubble layer should be increased with keeping an appropriate volume fraction of an air bubble for the most effective reduction of the radiation noise.

Development of Safe Hood for Pedestrian Protection (보행자 보호를 위한 안전 후드 개발)

  • Kim, T.J.;Hong, S.H.;Lee, D.H.;Han, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.345-346
    • /
    • 2008
  • Most pedestrian-vehicle crashes involve frontal impacts, and the vehicle front structures are responsible for most pedestrian injuries. The vehicle bumper contacts the lower legs at first. The leading edge of the hood (bonnet) strikes the proximal upper leg and finally, the head and upper torso hit the top surface of the hood or windscreen. In essence, the pedestrian wraps around the front of the vehicle until pedestrian and vehicle are traveling at the same speed. Since the hood surface is made from sheet metal, it is a relatively compliant structure and does not pose a major risk for severe head trauma. However, serious head injury can occur when the head hits a region of the hood with stiff underlying structures such as engine components. The solution is to provide sufficient clearance between the hood and underlying structures for controlled deceleration of a pedestrian's head. However, considerations of aerodynamic design and styling can make it extremely difficult to alter a vehicle's front end geometry to provide more under-hood space. In this study, the safe hood will be developed by designing new conceptual inner panel in order to decrease the pedestrian's head injuries without changing hood outer geometry.

  • PDF

The Portfolio Advantages of Sukuk: Dynamic Correlations Between Bonds and Sukuk

  • ALFALAH, Abdullah;STEVENSON, Simon;D'ARCY, Eamonn
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.4
    • /
    • pp.13-28
    • /
    • 2022
  • The growth of the Islamic finance sector has been well-documented. One of the most booming sectors has been Sukuk. According to several past studies, non-Islamic investors' interest in Sukuk is due, at least in part, to the diversification benefits that Sukuk provides in the context of a fixed-income portfolio. This paper compares a pair between Sukuk and Bonds in the Malaysian market issued by the same issuer to have an unbiased comparison. Using unconditional correlation methodology provides an initial examination of the relationship between the matched pairs. In addition, this paper adopts the standard GARCH-DCC approach of Engle (2002). This is a generalization of the Bollserslev (1990) GARCH model, allowing for the conditional correlation matrices to be time-varying. The findings reveal that the correlation between bonds and Sukuk is similar to that of bonds, making Sukuk a less appealing type of bond from a diversification standpoint. There are no significant differences between Sukuk and bonds. These finding questions the previously considered differences among different types of Sukuk and supports the argument that some Sukuk might not be compliant with Islamic rules and their structure, as contracts have the same risks for Sukuk holders regardless of the type of Sukuk.

Implementation and test results of on-channel repeater for ATSC 3.0 systems

  • Ahn, Sungjun;Kwon, Sunhyoung;Kwon, Hae-Chan;Kim, Youngsu;Lee, Jaekwon;Shin, Yoo-Sang;Park, Sung-Ik
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.715-732
    • /
    • 2022
  • Despite the successful launch of Advanced Television Systems Committee (ATSC) 3.0 broadcasting worldwide, broadcasters are facing obstacles in constructing void-less large-scale single-frequency networks (SFNs). The bottleneck is the absence of decent on-channel repeater (OCR) solutions necessary for SFNs. In the real world, OCRs suffer from the maleficent feedback interference (FI) problem, which overwhelms the desired input signal. Moreover, the undesired multipaths between studio-linked transmitters and the OCR deteriorate the forward signals' quality as well. These problems crucially restrict the feasibility of conventional OCR systems, arousing the strong need for cost-worthy advanced OCR solutions. This paper presents an ATSC 3.0-specific solution of advanced OCR that solves the FI problem and refines the input signal. To this end, the FI canceler and channel equalizer functionalities are carefully implemented into the OCR system. The presented OCR system is designed to be fully compliant with the ATSC 3.0 specifications and performs a fast and efficient signal processing by exploiting the specific frame structure. The real product of ATSC 3.0 OCR is fabricated as well, and its feasibility is verified via field and laboratory experiments. The implemented solution is installed at a commercial on-air site and shown to provide substantial coverage gain in practice.

Calculation of optimal design flood using cost-benefit analysis with uncertainty (불확실성이 고려된 비용-편익분석 기법을 도입한 최적설계홍수량 산정)

  • Kim, Sang Ug;Choi, Kwang Bae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.405-419
    • /
    • 2022
  • Flood frequency analysis commonly used to design the hydraulic structures to minimize flood damage includes uncertainty. Therefore, the most appropriate design flood within a uncertainty should be selected in the final stage of a hydraulic structure, but related studies were rarely carried out. The total expected cost function introduced into the flood frequency analysis is a new approach for determining the optimal design flood. This procedure has been used as UNCODE (UNcertainty COmpliant DEsign), but the application has not yet been introduced in South Korea. This study introduced the mathematical procedure of UNCODE and calculated the optimal design flood using the annual maximum inflow of hydroelectric dams located in the Bukhan River system and results were compared with that of the existing flood frequency. The parameter uncertainty was considered in the total expected cost function using the Gumbel and the GEV distribution, and the Metropolis-Hastings algorithm was used to sample the parameters. In this study, cost function and damage function were assumed to be a first-order linear function. It was found that the medians of the optimal design flood for 4 Hydroelectric dams, 2 probability distributions, and 2 return periods were calculated to be somewhat larger than the design flood by the existing flood frequency analysis. In the future, it is needed to develop the practical approximated procedure to UNCODE.