• Title/Summary/Keyword: compliant mechanism

Search Result 81, Processing Time 0.027 seconds

Design of Variable Release Torque-based Compliance Spring-clutch and Torque Estimation (가변 풀림 토크 기반 컴플라이언스 스프링 클러치의 설계 및 토크 추정)

  • Seok, Ju-Shin;Lee, Woo-Sub;Kang, Sung-Chul
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2016
  • A variable release torque-based compliance spring-clutch (VCSC) is presented. VCSC is a safe joint to reduce the impact of collisions between humans and robots. It is composed of four functional plates, balls, springs to make some functions in compliant movement, release mechanism, gravity compensation during its work. Also, it can estimate torque applied to a joint by using distance sensor and parameters of cam profile. The measured variable torque of prototype is 4.3~7.6 Nm and release torque is 4.3 Nm. In our future studies, a calibration for torque estimation will be conducted.

Performance analysis of co-orbiting scroll compressor (동시 선회 스크롤 압축기의 성능해석)

  • 김현진;김명균;서원열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.716-724
    • /
    • 1999
  • In co-orbiting scroll compressor, the two scroll members are to orbit with independent radii, producing a relative orbit motion between them. One scroll member is driven by the crank mechanism while the motion of the other member is determined by geometrical constraints and reacting forces. This paper presents an analytical study on the performance of a co-orbiting scroll compressor. The following results have been obtained: Radial contact force between the scroll wraps is virtually free from the centrifugal force of the orbiting scroll member. The frictional losses are somewhat increased due to the complicated drive mechanism, yielding to a little lower EER compared to conventional radially compliant scroll compressors .

  • PDF

Overview of flexure-based compliant microgrippers

  • Aia, Wenji;Xu, Qingsong
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Microgripper is an essential device in the micro-operation system. It can convert other types of energy into mechanical energy and produce clamp movement with required chucking force, which enables it a broad application prospect in the domain of tiny components' processing and assembly, biomedicine and optics, etc. The performance of a microgripper is dependent on its power supply, type of drive, mechanism structure, sensing components, and controller. This paper presents a state-of-the-art survey of recent development on flexure-based microgrippers. According to the drive type, the existing microgrippers can be mainly classified as electrostatic microgripper, electrothermal microgripper, electromagnetic microgripper, piezoelectric microgripper, and shape memory alloy microgripper. Additionally, some different mechanisms, sensors, and control methods that are used in microgripper system are reviewed. The key issue of how to choose those components in microgripper system design is also addressed.

Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis (기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발)

  • Geon Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.

Rotational Twisted String Actuator with Linearized Output for a Wearable Exoskeleton (입는 외골격 로봇을 위한 선형화된 출력을 갖는 회전형 줄꼬임 기반 구동기)

  • Mehmood, Usman;Popov, Dmitry;Gaponov, Igor;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.524-530
    • /
    • 2015
  • Early wearable robotic devices were big, powerful and manipulator-like. Recently, various applications of wearable robotics have shown a greater demand for lower weight and compliancy. One approach to achieve these objectives is the use of novel actuators such as twisted string actuators. These actuator are very light, quiet, mechanically simple and compliant. Therefore, they can drastically decrease the weight and size of robotic systems such as exoskeletons. However, one drawback of this actuator is its nonlinear transmission ratio, which is established as a ratio between the angle of twisting of the strings and their resulting contraction. In this paper, we propose a transmission mechanism with rotational motion as the output incorporating a twisted string actuator (TSA). The designed mechanism allows the linearization of the relationships between the input and output displacements and forces of a TSA. The proposed design has been validated theoretically and through a set of computer simulations. A detailed analysis of the performance of the proposed mechanism is presented in this paper along with a design guideline.

Modeling and Experimental Response Characterization of the Chevron-type Bi-stable Micromachined Actuator (Chevron형 bi-stable MEMS 구동기의 모델링 및 실험적 응답특성 분석)

  • 황일한;심유석;이종현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.203-209
    • /
    • 2004
  • Compliant bi-stable mechanism allows two stable states within its operation range staying at one of the local minimum states of the potential energy. Energy storage characteristics of the bi-stable mechanism offer two distinct and repeatable stable states, which require no power input to maintain it at each stable state. This paper suggests an equivalent model of the chevron-type bi-stable microactuator using the equivalent spring stiffness in the rectilinear and the rotational directions. From this model the range of spring stiffness where the bi-stable mechanism can be operated is analyzed and compared with the results of the FEA (Finite Element Analysis) using ANSYS for the buckling analysis, both of which show a good agreement. Based on the analysis, a newly designed chevron-type bi-stable MEMS actuator using hinges is suggested for the latch-up operation. It is found that the experimental response characteristics of around 36V for the bi-stable actuation for the 60$mu extrm{m}$ stroke correspond very well to the results of the equivalent model analysis after the change in cross-sectional area by the fabrication process is taken into account. Together with the resonance frequency experiment where 1760Hz is measured, it is shown that the chevron-type bi-stable MEMS actuator using hinges is applicable to the optical switch as an actuator.

Contact Repulsion of Robotic Foot and Its Influence on Knee and Hip Joints (로봇 발의 접촉 반발력이 무릎 및 힙 관절에 미치는 영향)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • This paper presents a model of bipedal leg mechanism with a compliant foot, and the contact repulsion of the foot for a typical walking pattern and its influence on the knee and hip joints of the leg will be analyzed. This analysis is useful for us to figure out the physical impact of the foot when a walking robot takes a step. Also it can be applied to determine the joint specification of the leg mechanism. As a result, it is shown that the compliance characteristics of a robotic foot can contribute to alleviate the joint torques of the leg affected by the contact repulsion of the foot.

Fabrication of composite hinge mechanism for flapping-wing motion of micro air vehicle (초소형 날갯짓 비행운동을 위한 복합재료 힌지 메커니즘 제작)

  • Kang, Lae-Hyong;Jang, Hee-Suk;Leem, Ju-Young;Han, Jae-Hung
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.7-12
    • /
    • 2009
  • This paper deals with a fabrication method of composite hinge mechanisms for flapping-wing micro air vehicles. The fabrication process includes curing process of Graphite/Epoxyprepregs, laser cutting for high fabrication repeatability, laminating of Graphite/Epoxy prepregs with Kapton film which is used for flexure, and so on. The fabricated hinge mechanism was attached with PUMPS actuators and the measured flapping angle was $173^{\circ}$ when driving voltage was 300V 170Hz.

A Neurofuzzy Algorithm-Based Advanced Bilateral Controller for Telerobot Systems

  • Cha, Dong-hyuk;Cho, Hyung-Suck
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.100-107
    • /
    • 2002
  • The advanced bilateral control algorithm, which can enlarge a reflected force by combining force reflection and compliance control, greatly enhances workability in teleoperation. In this scheme the maximum boundaries of a compliance controller and a force reflection gain guaranteeing stability and good task performance greatly depend upon characteristics of a slave arm, a master arm, and an environment. These characteristics, however, are generally unknown in teleoperation. It is, therefore, very difficult to determine such maximum boundary of the gain. The paper presented a novel method for design of an advanced bilateral controller. The factors affecting task performance and stability in the advanced bilateral controller were analyzed and a design guideline was presented. The neurofuzzy compliance model (NFCM)-based bilateral control proposed herein is an algorithm designed to automatically determine the suitable compliance for a given task or environment. The NFCM, composed of a fuzzy logic controller (FLC) and a rule-learning mechanism, is used as a compliance controller. The FLC generates compliant motions according to contact forces. The rule-learning mechanism, which is based upon the reinforcement learning algorithm, trains the rule-base of the FLC until the given task is done successfully. Since the scheme allows the use of large force reflection gain, it can assure good task performance. Moreover, the scheme does not require any priori knowledge on a slave arm dynamics, a slave arm controller and an environment, and thus, it can be easily applied to the control of any telerobot systems. Through a series of experiments effectiveness of the proposed algorithm has been verified.

Design and Verification of the Hardware Architecture for the Active Seat Belt Control System Compliant to ISO 26262 (ISO 26262에 부합한 능동형 안전벨트 제어 시스템의 하드웨어 아키텍처 설계 및 검증)

  • Lee, Jun Hyok;Koag, Hyun Chul;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2030-2036
    • /
    • 2016
  • This paper presents a hardware development procedure of the ASB(Active Seat Belt) control system to comply with ISO 26262. The ASIL(Automotive Safety Integrity Level) of an ASB system is determined through the HARA(Hazard Analysis and Risk Assessment) and the safety mechanism is applied to meet the reqired ASIL. The hardware architecture of the controller consists of a microcontroller, H-bridge circuits, passive components, and current sensors which are used for the input comparison. The required ASIL for the control systems is shown to be satisfied with the safety mechanism by calculation of the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric) for the design circuits.