• Title/Summary/Keyword: compliance structure

Search Result 206, Processing Time 0.026 seconds

Numerical Study on Blood Flow Dynamics and Wall Mechanics in a Compliant Carotid Bifurcation Model (혈관 유연성을 고려한 경동맥 분기부 모델 혈류역학 해석)

  • Nguyen, Minh Tuan;Lee, Sang-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.2
    • /
    • pp.28-32
    • /
    • 2015
  • Blood flow simulations in an realistic carotid bifurcation model with considering wall compliance were carried out to investigate the effect of wall elasticity on the wall shear stress and wall solid stress. Canonical waveforms of flow rates and pressure in carotid arteries were imposed for boundary conditions. Compared to a rigid wall model, we found an increased recirculation region at the carotid bulb and an overall reduction of wall shear stress in a compliant model. Additionally, there was appreciable change of flow rate and pressure wave in longitudinal direction. Both solid and wall shear stress concentration occur at the bifurcation apex.

Performance Analysis of Air Foil Bearings with Bump Friction (범프마찰을 고려한 공기포일베어링의 성능해석)

  • Kim, Young-Cheol;Kim, Dong-Hyun;Kim, Kyun-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.47-55
    • /
    • 2006
  • This paper presents the theoretical model to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Foil deflection is restricted by friction of bumps. Equivalent viscous damping of the bump foils is derived from the Coulomb friction. Dynamic equation of the bumps is constituted by stiffness and damping terms. This point give the difference from Heshmat's frictionless and simple compliance bump model. The fluid is modeled with the compressible Reynolds equation. A perturbation approach is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by bump friction. This analysis technique would be extended to development of a high performance bearing.

Piezoelectric PZT/Polymer Composite with 3-3 Connectivity (3-3 결합으로 이루어진 PZT/고분자 압전복합체)

  • 윤기현;염상덕
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.125-130
    • /
    • 1988
  • The characteristics of the PZT/PMM and PZT/Butadiene composites with 3 dimensional network structure have been investigated as a function of the PZT volume fraction. The dielectric constants of the PZT composites increased linearly as the PZT volume fraction increased. However, they are not significantly affected by the polymer compliance. The piezoelectric d33 coefficients of the PZT/Butadiene are largest than the PZT/PMM because of the high elastic compliance which promotes stress transfer. The values of the mechanical quality factor adn frequency factor of the PZT/PMM composite are slightly larger, while the planar coupling factor is smaller, than the PZT/Butadiene composite. These results are due to strong interaction and mechanical coupling between PZT and PMM.

  • PDF

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts (항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계)

  • Yun, Taewook;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

Force Fields and Elastic Properties of Syndiotactic Isoregic Poly(viny1 fluoride) Crystal (Syndiotactic isoregic 폴리비닐플로라이드 결정의 Force Fields 및 Elastic Properties)

  • Geo, G;Lee, Jeong-Gu;Hong, Jin-Hu
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.792-797
    • /
    • 1994
  • Force fields of syndiotactic isoregic PVF crystal have been extracted by optimizing a structure of 2,4,6-trifluoroheptane with ab initio Quantum mechanical method with 6-31G * * basis set, and applied to calculate the structure parameters and elastic constants of the material. The cell parameters turned out to be 5.205$\AA$, of a axis(chain axis), 8.457$\AA$, of b axis and 4.621$\AA$ of c axis. These parameters are in fair agreement with those of the atactic X-ray structure(5.04$\AA$, 8.57$\AA$, and 4.95$\AA$,respectively). The young's modulus of defect free syndiotactic PVF crystal was computed to be 267 GPa comparable to those of polyvinilidene fluoride(277-293 GPa) and polyethylene(264-337 GPa) crystals. Bulk modulus value obtained at optimum geometry is more than twice greater than that obtained at experimental geometry due to large difference of elastic compliance constant (especially Sgj element) at these two different geometries.

  • PDF

Topology optimization of the structure using multimaterial inclusions

  • Kutylowski, Ryszard
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.285-306
    • /
    • 2009
  • In the literature the problem of the topology optimization of the structure is usually solved for one, clearly described from the mechanical point of view material. Generally the topology optimization answers the question of the distribution of this mentioned above material within the design domain. Finally, material-voids distribution it is obtained. In this paper, for the structure mainly strengthened or sometimes weakened by the inclusions, the variation approach of the topology optimization problem is formulated. This multi material approach may be useful for the design process of various mechanical or civil engineering structures which need to be more "refined" and more "optimal" than they can be using previous topology optimization procedures of optimization one material structures.

A Study on the Static and Dynamic Stiffness Evaluation of a High Speed Mold/Die Machining Center Structure (고속 금형가공센터 구조물의 강성평가에 관한 연구)

  • 최영휴;강영진;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.102-106
    • /
    • 2003
  • An experimental modal analysis and dynamic stiffness evaluation of a moving body structure of a high speed machining center are presented in this paper. The natural frequencies and corresponding modes, and dynamic compliance of a moving body structure of high speed machining center are investigated by using F.E.M., hydraulic exciter test, and impulse hammer test. The lowest three natural frequencies were found to be 56.6 Hz, 112.7 Hz, and 142.7 Hz by FEA respectively, while those were 55 Hz, 112 Hz, 131 Hz by experimental analysis. Furthermore, both computed and measured absolute dynamic compliances of the moving body structure in iso-direction showed good agreement especially at the first two mode frequencies. With our experimental data, the dynamic characteristics of the machining center can be exploited to get a new development of structural dynamic design and modification.

  • PDF

A Study on Multiphase Optimization of Machine Tool Structures (공작기계구조물의 다단계 최적화에 관한 연구)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.42-45
    • /
    • 2002
  • In this paper, multiphase optimization of machine Tool structure is presented. The final goal is to obtain 1) light weight, 2) statically and dynamically rigid. and 3) thermally stable structure. The entire optimization process is carried out in three phases. In the first phase, multiple static optimization problem with two objective functions is treated using Pareto genetic algorithm. where two objective functions are weight of the structure and static compliance. In the second phase, maximum receptance is minimized using simple genetic algorithm. And the last phase, thermal deflection to moving heat sources is analyzed using Predictor-Corrector Method. The method is applied to a high speed line center design which takes the shape of back-column structure.

  • PDF

Design of Compliant Hinge Joints inspired by Ligamentous Structure (인대 구조에 기인한 유연 경첩 관절의 설계)

  • Lee, Geon;Yoon, Dukchan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.237-244
    • /
    • 2019
  • This paper suggests novel types of joint mechanisms composed of elastic strings and rigid bodies. All of the human hinge joints have the articular capsule and a pair of collateral ligaments. These fibrous tissues make the joint compliant and stable. The proposed mechanism closely imitates the human hinge joint structure by using the concept of tensegrity. The resultant mechanism has several characteristics shown commonly from both the tensegrity structure and the human joint such as compliance, stability, lightweight, and non-contact between rigid bodies. In addition, the role and feature of the human hinge joints vary according to the origins of a pair of collateral ligaments. Likewise, the locations of two strings corresponding to a pair of collateral ligaments produce different function and motion of the proposed mechanism. It would be one of the advantages obtained from the proposed mechanism. How to make a joint mechanism with different features is also suggested in this paper.

Multilayered viscoelastic beam loaded in torsion under strain-path control: A delamination analysis

  • Victor I. Rizov
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.87-102
    • /
    • 2024
  • This paper is focused on the delamination analysis of a multilayered beam structure loaded in torsion under strain-path control. The beam under consideration has a rectangular cross-section. The layers of the beam are made of different viscoelastic materials which exhibit continuous inhomogeneity in longitudinal direction. Since the delamination is located inside the beam structure, the torsion moments in the two crack arms are obtained by modeling the beam as an internally static undetermined structure. The strain energy stored in the beam is analyzed in order to derive the strain energy release rate (SERR). Since the delamination is located inside the beam, the delamination has two tips. Thus, solutions of the SERR are obtained for both tips. The solutions are verified by analyzing the beam compliance. Delamination analysis with bending-torsion coupling is also performed. The solutions derived are timedependent due to two factors. First, the beam has viscoelastic behavior and, second, the angle of twist of the beam-free end induced by the external torsion moment changes with time according to a law that is fixed in advance.