• Title/Summary/Keyword: complex viscosity

Search Result 241, Processing Time 0.07 seconds

Modification of PLA by Irradiation of Electron Beam in the Presence of Functional Monomer: Rheological and Thermal Properties (기능성 단량체를 함유한 PLA의 전자선 조사에 의한 개질: 유변학적 성질 및 열적 특성)

  • Kang, Kyoung Soo;Shin, Boo Young
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.124-130
    • /
    • 2008
  • In order to fabricate a modified poly (lactic acid) (PLA) for applications requiring high melt strength, a PLA has been irradiated in the presence of functional monomer of glycidyl methacrylate (GMA). Samples were prepared with various contents of GMA and irradiation dosages, and were characterized by observing their thermal and melt viscoelastic properties and gel faction. The complex viscosity and storage modulus of the modified PLA without GMA were lower than those of the original PLA. Those of the modified PLA decreased with increasing dosage. In the case of the modified PLA containing 0.1 phr or 0.3 phr of GMA, their changing tendency with dosage was similar to the irradiated PLA without GMA. However, the 5 kGy irradiated PLA containing 0.5 phr of GMA showed the greatly enhanced complex viscosity and storage modulus, which were about 3 and 10 times higher than those of the original PLA at a frequency of 0.1 rad/s, respectively.

Influence of Cholesterol Derivatives on the Several Physicochemical Properties of Oleic acid (Oleic acid의 여러 물리화학적 성질에 미치는 Cholesterol계 유도체의 영향)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.813-820
    • /
    • 2019
  • The influence of cholesterol on the physicochemical properties of the oleic acid was clarified through the measurements of density, viscosity, IR, $^1H$ NMR, self-diffusion coefficient for the oleic acid samples containing a small amount of additives such as cholesterol, cholestanol, cholestane, cholesteryl oleate, benzene, and ethanol. Cholesterol, possessing one OH group and one double bond in its molecular structure, largely increased the viscosity and reduced the self-diffusion coefficient and the intramolecular movement of oleic acid. Oleic acid forms a complex with cholesterol as well as with ethanol. On the basis of these complex formations and the existence of the clusters composed of oleic acid dimers, it was known the role and the fundamental mechanism of cholesterol to the intermolercular and intramolecular movements of oleic acid in the liquid state.

Shear-induced structure and dynamics of hydrophobically modified hydroxy ethyl cellulose (hmHEC) in the presence of SDS

  • Tirtaatmadija, Viyada;Cooper-white, Justin J.;Gason, Samuel J.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.189-201
    • /
    • 2002
  • The interaction between hydrophobically modified hydroxyethyl cellulose (hmHEC), containing approximately 1 wt% side-alkyl chains of $C_{16}$, and an anionic sodium dodecyl sulphate (SDS) surfactant was investigated. For a semi-dilute solution of 0.5 wt% hmHEC, the previously observed behaviour of a maximum in solution viscosity at intermediate SDS concentrations, followed by a drop at higher SDS concentrations, until above the cmc of surfactant when the solution resembles that of the unsubstituted polymer, was confirmed. Additionally, a two-phase region containing a hydrogel phase and a water-like supernatant was found at low SDS concentrations up to 0.2 wt%, a concentration which is akin to the critical association concentration, cac, of SDS in the presence of hmHEC. Above this concentration, SDS molecules bind strongly to form mixed micellar aggregates with the polymer alkyl side-chains, thus strengthening the network junctions, resulting in the observed increase in viscosity and elastic modulus of the solution. The shear behaviour of this polymer-surfactant complex during steady and step stress experiments was examined In great detail. Between SDS concentrations of 0.2 and 0.25 wt%, the shear viscosity of the hmHEC-polymer complex network undergoes shear-induced thickening, followed by a two-stage shear-induced fracture or break-up of the network. The thickening is thought to be due to structural rearrangement, causing the network of flexible polymers to expand, enabling some polymer hydrophobic groups to be converted from intra- to inter-chain associations. At higher applied stress, a partial local break-up of the network occurs, while at even higher stress, above the critical or network yield stress, a complete fracture of the network into small microgel-like units, Is believed to occur. This second network rupture is progressive with time of shear and no steady state in viscosity was observed even after 300 s. The structure which was reformed after the cessation of shear is found to be significantly different from the original state.

SLUMPING TENDENCY AND RHEOLOGICAL PROPERTY OF FLOWABLE COMPOSITES (Flowable 복합레진의 slumping 경향과 유변학적 성질)

  • Lee, In-Bog;Min, Sun-Hong;Kim, Sun-Young;Cho, Byung-Hoon;Back, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • The aim of this study was to develop a method for measuring the slumping resistance of flowable resin composites and to evaluate the efficacy using rheological methodology. Five commercial flowable composites (Aelitefil flow:AF, Filtek flow:FF, DenFil flow:DF, Tetric flow:TF and Revolution:RV) were used. Same volume of composites in a syringe was extruded on a glass slide using a custom-made loading device. The resin composites were allowed to slump for 10 seconds at $25^{\circ}C$ and light cured. The aspect ratio (height/diameter) of cone or dome shaped specimen was measured for estimating the slumping tendency of composites. The complex viscosity of each composite was measured by a dynamic oscillatory shear test as a function of angular frequency using a rheometer. To compare the slumping tendency of composites, one way-ANOVA and Turkey's post hoc test was performed for the aspect ratio at 95% confidence level. Regression analysis was performed to investigate the relationship between the complex viscosity and the aspect ratio. The results were as follows. 1. Slumping tendency based on the aspect ratio varied among the five materials (AF

Solid Particle Behavior Analysis in Rheology Material by Fortran 90 (레오로지 소재의 고상입자 변형거동 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.234-237
    • /
    • 2008
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, Rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology Process to be Performed. General Plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape. In addition, the dynamics behavior compare with Okano equation to Power law model which is viscosity equation.

  • PDF

Time Dependence of the Rheological Properties of the Solutions of Polyacrylontrile and Acrylonitrile-Itaconic Acid Copolymer in Dimethyl sulfoxide (아크릴 중합체 및 아크릴-이타코닉산 공중합체/ 디메틸술폭시드 용액의 유변학적 특성의 시간의존성)

  • 이남순
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.435-440
    • /
    • 2001
  • This study investigates the rheological properties of in-situ polymerized solutions of polyacrylonitrile(PAN) and acrylonitrile(AN) -itaconic acid(IA) in dimethyl sulfoxide(DMSO) in terms of temperature, concentration, and time. The complex viscosity and storage modulus of the solutions were generally increased with elapsing time, which is ascribable to the three-dimensional pseudostructures formed by strong inter- or Intra-molecular attractions through Polar -CN and -COOH groups. The three-dimensional pseudonetworks would lead to relation of the acrylic solutions in long term. This was more noticeable at higher temperature within the temperature range examined. In the case of 20% solutions one can not observe lower Newtonian flow region in the viscosity curve. Disappearance of lower Newtonian flow region is indicative of heterogeneity of the solution system. Casson Plot of the viscosity data revealed that 20% solutions of PAN and AN-IA copolymer in DMSO clearly demonstrated positive yield stress, ascertaining formation of pseudostructures in the solution systems.

  • PDF

Time Dependence of the Rheological Properties of the Solutions of Polyacrylontrile and Acrylonitrile-Itaconic Acid Copolymer in Dimethyl sulfoxide (아크릴 중합체 및 아크릴-이타코닉산 공중합체/디메틸술폭시드 용액의 유변학적 특성의 시간의존성)

  • Lee, Nam Sun
    • Textile Coloration and Finishing
    • /
    • v.13 no.6
    • /
    • pp.77-77
    • /
    • 2001
  • This study investigates the rheological properties of in-situ polymerized solutions of polyacrylonitrile(PAN) and acrylonitrile(AN)-itaconic acid(IA) in dimethyl sulfoxide(DMSO) in terms of temperature, concentration, and time. The complex viscosity and storage modulus of the solutions were generally increased with elapsing time, which is ascribable to the three-dimensional pseudostructures formed by strong inter- or intra-molecular attractions through Polar -CN and -COOH groups. The three-dimensional pseudonetworks would lead to gelation of the acrylic solutions in long term. This was more noticeable at higher temperature within the temperature range examined. In the case of 20% solutions one can not observe lower Newtonian flow region in the viscosity curve. Disappearance of lower Newtonian flow region is indicative of heterogeneity of the solution system. Casson Plot of the viscosity data revealed that 20% solutions of PAN and AN-IA copolymer in DMSO clearly demonstrated positive yield stress, ascertaining formation of pseudostructures in the solution systems.

The transformation of the complex of high charge density cationic polymer with sodium dodecyl sulfate into vesicles by nonionic surfactant (고전하밀도 양이온성폴리머와 Sodium dodecyl sulfate가 만드는 콤플렉스에 대한 비이온계면활성제의 영향)

  • Lee, Jung-No;Kang, Kye-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.205-210
    • /
    • 2008
  • The transformation of the liquid crystal complex made by binding of anionic surfactant, sodium dodecyl sulfate (SDS), into high charge density cationic polymer, the homopolymer of diallyldimethylammonium chloride (PDADMAC) was induced by adding of nonionic surfactants and investigated by means of microscopy and FE.SEM. Among nonionic surfactants in this experiments polyethylene glycol (3 mol) ether of lauryl alcohol (laureth-3) made variation in the complex. The laureth-3 transformed the complex into spherulite vesicle with the size of ca.$100{\mu}m$. This change increased the viscosity and the turbidity of the solution phase separated originally. Microscope showed that they are spherulite particles and polarized microscope suggested they are multi.lamellar liquid crystals. FE-SEM also proved that explicitly.

Rheology of Decamethylceclopentasiloxane (cyclomethicone) W/O Emulsion System

  • Choi, Min-Hyung;Jeong, So-Ra;Nam, Sang-In;Shim, Sang-Eun;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.943-949
    • /
    • 2009
  • A highly dispersed W/O emulsion of silicone oil (cyclomethicone)/water system was prepared with a nonionic surfactant. The surface and interfacial tension between the oil and water were characterized in terms of the droplet size distribution and viscosity change of the emulsion. When the dispersed phase concentration was relatively high, the viscosity of the emulsion was rapidly increased and the droplet size of the emulsion was decreased. The rheological behavior of the emulsion system showed non-Newtonian and shear thinning phenomena depending upon the content of the dispersed phase. The droplet size of the emulsion was decreased with increasing surfactant content and water concentration. The relative viscosity of the emulsion was better predicted with the Choi-Schowalter model than with the Taylor model. The value of the complex modulus increased with increasing surfactant concentration. The linear viscoelastic region was expanded with a dispersed phase concentration. According to the change in the viscosity, the behavior was classified into three distinct regions: [I] linear viscoelastic, [II] partially viscoelastic, and [III] viscous. The creep/recovery behaviors in each region were characterized.

STUDIES ON THE POLY(4,4-TEREPHTHANILIDEALKYLAMIDE)S (II) Rheological properties and Fibre Performance

  • Seung Sang Hwang;Byo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1987.06b
    • /
    • pp.11-11
    • /
    • 1987
  • Among other poly(4,4'-terephthanilidealkylamide)s (PTAA's), poly (4,4'-terephthanilideadipamide) (PTAd) gave clear critical concentration curves. For PTAA's with methylene units more than 6, the critical concentration (C*) seemed to be beyond the solubility limit of H₂SO₄. Under shearing conditions, the nematic domains were easily oriented and stretched in the direction of shear , and a fibrillar structure resulted. At low frequencies, a monotollous reduction of loss tangent (tan) was observed as concentration increased. At high frequencies, however, tan was increased above C* again, and showed maximum at saturation concentration (Cs). With increasing temperature, viscosity of isotropic and anisotropic phases was normally decreased, while viscosity of biphases was increased. Plot of complex viscosity (If) against temperature based on rheological measurements exhibited a good correlation with phase diagram constructed by polarizing microscope observations. Rheological parameters suggested the optimum dope concentration of PTAd with inherent viscosity 2.02 at 30oc is in the vicinity of 19.2 wt%, which seemed to agree well with spinning experiments (around 19.4 wt%). In general, effects of spinning and annealing conditions on the mechanical properties of PTAA fibres were most pronounced in PTAd fibre spun from anisotropic spinning dope .

  • PDF