• Title/Summary/Keyword: complex representation

Search Result 382, Processing Time 0.027 seconds

World Representation Using Complex Network for Reinforcement Learning (복잡계 네트워크를 이용한 강화 학습에서의 환경 표현)

  • 이승준;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.622-624
    • /
    • 2004
  • 강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)였다 문제가 커짐에 따라 목적을 이루기 위해서 더 많은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위해 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 최근 이루어진 복잡계 네트워크(Complex Network)에 대한 연구에 착안하여 본 논문은 자기조직화하는 생장 네트워크(Self organizing growing network)를 기반으로 한 간단한 환경 표현 모델을 사용하는 강화 학습 알고리즘을 제안한다 네트웍은 복잡계 네트웍이 갖는 성질들을 유지하도록 자기 조직화되고, 노드들 간의 거리는 작은 세상 성질(Small World Property)에 따라 전체 네트웍의 큰 사이즈에 비해 짧게 유지된다. 즉 판단해야할 단계의 수가 적게 유지되기 때문에 이 방법으로 차원성의 저주를 피할 수 있다.

  • PDF

Motion-Estimated Active Rays-Based Fast Moving Object Tracking (움직임 추정 능동 방사선 기반 고속 객체 추적)

  • Ra Jeong-Jung;Seo Kyung-Seok;Choi Hung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.15-22
    • /
    • 2005
  • This paper proposed a object tracking algorithm which can track contour of fast moving object through motion estimation. Since the proposed tracking algorithm is based on the radial representation, the motion estimation of object can be accomplished at the center of object with the low computation complexity. The motion estimation of object makes it possible to track object which move fast more than distance from center point to contour point for each frame. In addition, by introducing both gradient image and difference image into energy functions in the process of energy convergence, object tracking is more robust to the complex background. The results of experiment show that the proposed algorithm can track fast moving object in real-time and is robust under the complex background.

Knowledge Structures to Simulate the Spatial Behavior of Intelligent Virtual Humans (지능형 가상인간의 공간적 행동을 모사하기 위한 지식구조)

  • Hong, Seung-Wan;Park, Jong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.230-240
    • /
    • 2020
  • To develop a virtual world-based immersive tutoring system, we would like to develop a simulation in the spatial aspect to maximize the diversity and realism of the situation. This implementation requires the modeling of virtual space as well as the knowledge and intelligent thinking functions of virtual humans. First, information structures are needed to simulate the hierarchical and multifaceted composition of space and the corresponding knowledge of virtual humans. Specifically, four structures for 2.5D spatial distribution expression, complex spatial relationship expression, object expression, and temporal and spatial representation of events are developed respectively. It then uses these expressed knowledge to develop the spatial thinking function of virtual humans needed to make spatial movement. In general, events have a chain effect on adjacent or connected objects through force, resulting in a variety of situations and reflected in the planning of the next action by the virtual humans involved. For this purpose, the development of events according to historical trends is recorded on the representation structure of time and space. It embodies typical events to demonstrate the feasibility of independent behavior in complex spaces among virtual people.

Semantic Types and Representation of Korean Set Time Expressions (한국어 집합 시간 표현의 의미 유형과 표상)

  • Kim, Mun-Hyong;Jo, Yu-Mi;You, Hyun-Jo;Jang, Ha-Yeon;Kim, Yoon-Shin;Nam, Seung-Ho;Shin, Hyo-Pil
    • Language and Information
    • /
    • v.16 no.1
    • /
    • pp.25-43
    • /
    • 2012
  • This study introduces set-denoting time expressions in Korean, which can be divided into simple and complex types. It was found that while the simple type expressions are easily represented within ISO-TimeML, a time-expression markup language, some complex type set-denoting expressions are not. Therefore, this study analyzes the reason for these difficulties in representing complex type expressions, as well as suggests the introduction of @measure and @interpretation attributes in the TIMEX3 tag. The @measure attribute represents the time interval, and the @interpretation attribute is used to distinguish distributive readings from cumulative readings. Additionally this paper suggests that a mapping between these and other attributes are required in TLINK.

  • PDF

Numerical Simulation of Effect on Atmospheric Flow Field Using High Resolution Terrain Height Data in Complex Coastal Regions (복잡한 해안지역에서 상세한 지헝고도 자료이용에 따른 대기 유동장의 영향에 관한 수치모의)

  • Lee Hwa Woon;Won Hye Young;Choi Hyun-Jung;Lee Kang-Yeol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.179-189
    • /
    • 2005
  • Recently air quality modeling studies for industrial complex and large cities located in the coastal regions have been carried out. Especially, the representation of atmospheric flow fields within a model domain is very important, because an adequate air quality simulation requires an accurate portrayal of the realistic three -dimensional wind fields. Therefore this study investigated effect of using high resolution terrain height data in numerical simulation. So the experiments were designed according to the detail terrain height with 3second resolution or not. Case 30s was the experiment using the terrain height data of USGS and Case 3s was the other using the detail terrain height data of Ministry of Environment. The results of experimental were more remarkable. In Case 3s, temperature indicated similar tendency comparing to observational data predicting maximum temperature during the daytime and wind speed made weakly for difference of terrain height.

A Triangularization Algorithm Solving for the Complex Design with Precedence Constraints and IDEF3 Modeling in Concurrent Engineering (전제조건과 IDEF3를 응용한 동시공학환경에서의 복합설계)

  • Cho, Moon-Soo;Lim, Tae-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.742-752
    • /
    • 2009
  • Engineering design involves the specification of many variables that define a product, how it is made, and how it behaves applied to computer, communication and control fields. Before some variables can be determined, other variables must first be known or assumed. This fact implies a precedence order of the variables, and of the tasks of determining these variables consequently. Moreover, design of complex systems may involve a large number of design activities. In this paper, the activity-activity incidence matrix is considered as a representation of design activity analysis which mainly focuses on the precedence constraint with an object of doing IDEF3 in process-centered view. In order to analyze the activity-activity incidence matrix, a heuristic algorithm is proposed, which transforms an activity-activity, parameter-formula, and parameter-parameter incidence matrix into a lower triangular form. The analysis of the structured matrices can not only significantly reduce the overall project complexity by reorganizing few critical tasks in practice, but also aims at obtaining shorter times considering the solution structure by exploring concurrency.

GROSSBERG-KARSHON TWISTED CUBES AND BASEPOINT-FREE DIVISORS

  • HARADA, MEGUMI;YANG, JIHYEON JESSIE
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.853-868
    • /
    • 2015
  • Let G be a complex semisimple simply connected linear algebraic group. The main result of this note is to give several equivalent criteria for the untwistedness of the twisted cubes introduced by Grossberg and Karshon. In certain cases arising from representation theory, Grossberg and Karshon obtained a Demazure-type character formula for irreducible G-representations as a sum over lattice points (counted with sign according to a density function) of these twisted cubes. A twisted cube is untwisted when it is a "true" (i.e., closed, convex) polytope; in this case, Grossberg and Karshon's character formula becomes a purely positive formula with no multiplicities, i.e., each lattice point appears precisely once in the formula, with coefficient +1. One of our equivalent conditions for untwistedness is that a certain divisor on the special fiber of a toric degeneration of a Bott-Samelson variety, as constructed by Pasquier, is basepoint-free. We also show that the strict positivity of some of the defining constants for the twisted cube, together with convexity (of its support), is enough to guarantee untwistedness. Finally, in the special case when the twisted cube arises from the representation-theoretic data of $\lambda$ an integral weight and $\underline{w}$ a choice of word decomposition of a Weyl group element, we give two simple necessary conditions for untwistedness which is stated in terms of $\lambda$ and $\underline{w}$.

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

Probabilistic model for bio-cells information extraction (바이오 셀 정보 추출을 위한 확률 모델)

  • Seok, Gyeong-Hyu;Park, Sung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.649-656
    • /
    • 2011
  • This study is a numerical representative modelling analysis for applying the process that unravels networks between cells in genetics to Network of informatics. Using the probabilistic graphical model, the insight from the data describing biological networks is used for making a probabilistic function. Rather than a complex network of cells, we reconstruct a simple lower-stage model and show a genetic representation level from the genetic based network logic. We made probabilistic graphical models from genetic data and extend them to genetic representation data in the method of network modelling in informatics.

Low-latency Montgomery AB2 Multiplier Using Redundant Representation Over GF(2m)) (GF(2m) 상의 여분 표현을 이용한 낮은 지연시간의 몽고메리 AB2 곱셈기)

  • Kim, Tai Wan;Kim, Kee-Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.