• 제목/요약/키워드: complex oxide powder

검색결과 32건 처리시간 0.018초

La0.07Sr0.3Co0.2Fe0.8O3-δ 분리막의 제조 및 산소투과 특성 (Preparation and Oxygen Permeation Properties of La0.07Sr0.3Co0.2Fe0.8O3-δ Membrane)

  • 박정훈;김종표;백일현
    • 공업화학
    • /
    • 제19권5호
    • /
    • pp.477-483
    • /
    • 2008
  • 구연산법을 이용하여 $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ 산화물을 합성하였으며, 합성된 분말은 압축 성형 후 $1300^{\circ}C$에서 소결하여 치밀한 페롭스카이트 분리막을 제조하였다. 구연산법으로 제조한 $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$의 전구물질은 TGA와 XRD로 분석하였다. $260{\sim}410^{\circ}C$ 온도 영역에서 전구물질의 금속-구연산 복합체가 분해되며 페롭스카이트 산화물이 얻어지나 XRD 분석결과 $900^{\circ}C$ 이하에서는 $SrCO_3$가 불순물로 존재하였다. 분리막의 전기전도도는 온도가 증가함에 따라 증가하다. 결정격자의 산소 손실로 인해 공기분위기에서는 $700^{\circ}C$ ($Po_2=0.2atm$)부터, 헬륨분위기에서는 $600^{\circ}C$ ($Po_2=0.01atm$) 부터 각각 감소하였다. 산소투과량은 온도가 증가할수록 증가하였고, 두께 1.6 mm의 $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ 분리막은 $950^{\circ}C$에서 $0.31cm^3/cm^2{\cdot}min$의 최대 투과도를 보였다. 산소투과에 대한 활성화 에너지는 $750{\sim}950^{\circ}C$ 온도 영역에서 88.4 kJ/mol이었다. 40 h의 투과실험 후에 분리막의 페롭스카이트 결정 구조는 변하지 않았으며 0.3 mol Sr doping 시 2차상이 생성되지 않고 안정하였다.

In-Ceram 코아의 표면처리 방법에 따른 레진시멘트와의 전단결합강도에 관한 연구 (THE INFLUENCE OF SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF RESIN CEMENTS TO IN-CERAM CORE)

  • 윤정태;이선형;양재호
    • 대한치과보철학회지
    • /
    • 제38권2호
    • /
    • pp.129-146
    • /
    • 2000
  • An increasing demand for esthetic restorations has led to the development of new ceramic systems. In-Ceram, a glass-infiltrated alumina ceramic has three to few times greater flexural strength than other ceramic glass material. Because of its high strength, In-Ceram has been suggested as inlay, crown, laminate veneer and core material for resin bonded fixed partial dentures. This clinical application requires a stable resin bond to In-Ceram core. The purpose of this study was to evaluate the shear bond strength between In-Ceram core and resin cements according to various surface treatments and storage conditions. The surface of each In-Ceram core sample was subjected to one of the following treatments and then bonded to Panavia 21 or Variolink II resin cement. ; (1) sandblasting with $110{\mu}m$ aluminum oxide powder, (2) sandblasting and silanization, (3) sandblasting and Siloc treatment, (4) sandblasting and Targis link application. Each of eight bonding groups was tested in shear bond strengths after the following storage times and thermocycling. ; A) 24 hours storage in distilled water at $37^{\circ}C$, B) 5 weeks storage in distilled water at $37^{\circ}C$ C) 5 weeks storage in distilled water at $37^{\circ}C$ and thermocycled 2,000 thormocycling for every 10 days(totally 10,000 thermocycting) in $5^{\circ}C-55^{\circ}C$ bath. The bond failure modes were observed with scanning electron microscope(SEM). The results were as fellows : 1 The shear bond strengths of sandblasting group were significantly lesser than the other groups after 24 hours water storage. No significant difference of bonding strengths was found between storage time conditions(24 hours and 5 weeks). The shear bond strengths showed a tendency to decrease in Variolink II bonding groups and to increase in Panavia 21 bonding groups. 3. After thermocycling, the shear bond strengths of all groups were significantly decreased(p<0.01) and Targis link group exhibited significantly greater strengths than the other groups(p<0.05). 4. Panavia 21 bonding groups exhibited significantly greater bonding strengths in sandblasting group(p<0.01) and silane group(p<0.05) than Variolink II bonding groups. 5. In observation of bond failure modes, Targis link group showed cohesive failure in resin part and silane group and Siloc group showed complex failure and sandblasting group showed adhesive failure between In-Ceram and resin.

  • PDF