• Title/Summary/Keyword: complex motion

Search Result 817, Processing Time 0.029 seconds

Fast Side Information Generation Method using Adaptive Search Range (적응적 탐색 영역을 이용한 보조 정보 생성의 고속화 방법)

  • Park, Dae-Yun;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.179-190
    • /
    • 2012
  • In Distributed Video Coding(DVC), a low complexity encoder can be realized by shifting complex processes of encoder such as motion estimation to decoder. Since not only motion estimation/compensation processes but also channel decoding process needs to be performed at DVC decoder, the complexity of a decoder is significantly increased in consequence. Therefore, various fast channel decoding methods are proposed for the most computationally complex part, which is the channel decoding process in DVC decoding. As the channel decoding process becomes faster using various methods, however, the complexity of the other processes are relatively highlighted. For instance, the complexity of side information generation process in the DVC decoder is relatively increased. In this paper, therefore, a fast method for the DVC decoding is proposed by using adaptive search range method in side information generation process. Experimental results show that the proposed method achieves time saving of about 63% in side information generation process, while its rate distortion performance is degraded only by about 0.17% in BDBR.

Design of High Performance Dual Channel Pipelined Interpolators for H.264 Decoder (이중 채널 파이프라인 구조의 H.264용 고성능 보간 연산기 설계)

  • Lee, Chan-Ho
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.110-115
    • /
    • 2009
  • The motion compensation is the most time-consuming and complex unit in the H.264 decoder. The performance of the motion compensation is determined by the calculation of pixel interpolation. The quarter-pixel interpolation is achieved using 6-tap horizontal or vertical FIR filters for luminance data and bilinear FIR filters for chroma data. We propose the architecture for interpolation of luminance and chroma data in H.264 decoders. It is composed of dual-channel pipelined processing elements and can interpolate integer-, half- and quarter-pixel data. The number of the processing cycles is different depending on the position. The processing elements are composed of adders and shifters to reduce the complexity while the accuracy of the pixel data are maintained. We design interpolators for luminance and chroma data using Verilog-HDL and verify the function and performance by implementing using an FPGA.

  • PDF

A Study for impact absorption function of midsole in Cushioned Marathon Shoes (충격흡수용 마라톤화(Cushioned Shoes) 개발을 위한 중창·하지의 충격흡수기능 연구 -마라톤화 연구의 과거 & 현재를 중심으로-)

  • Park, Seung-Bum;Seo, Kuk-Woong;Kim, Yong-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.89-114
    • /
    • 2002
  • The purpose of this study was to analyze impact absorption function of midsole in cushioned marathon shoes. The foot is made up of a complex interaction of bones, ligaments, and muscles. These structures help the foot alternate between being a mobile, flexible adaptor and a stable rigid lever. The foot is broken down into two functional parts, the forefoot and the rearfoot. Cushioned marathon shoes for high arches have generous cushioning for efficient and high-mileage runners. Cushioned marathon shoes are made for feet that have high arches or no excessive motion and don't roll inward or roll outward. This condition is known as underpronation. Especially, Cushioned marathon shoes are designed to reduce shock and generally have the softest (or most cushioned) midsoles and the least medial support. They are usually built on a semicurved or curved last to encourage foot motion, which is helpful for underpronators (who have rigid, immobile feet). Cushioning marathon shoes recommended for the high-arched runner, whose foot may roll outward (supinate) rather than the natural slight inward roll, or whose feet may be relatively rigid. Cushioning shoes emphasize flexibility and usually are built on a curved or semicurved last to encourage a normal motion of the foot. Cushioning shoes usually offer no medial (inner foot) support. Cushioned marathon shoes have the single-density midsole, which is stable and relatively firm for a cushioned shoe, stays the same. But the forefoot is more rounded, and the rearfoot now includes a new and supportive rearfoot cradle. A foam midsole, perhaps with layers of different densities, to provide cushioning and shock absorption. EVA (ethylene vinyl acetate) and PU (polyurethane), the materials from which these foams usually are made. EVA is slightly softer than PU. EVA and PU may be layered together in a shoe, or a shoe may have more than one density of EVA.

A Study on the Interface Micromotions of Cementless Artificial Hip Replacement by Three-Dimensional FEM (무시멘트형 인공고관절 대치술후 초기의 경계면 미세운동의 3차원 FEM 연구)

  • Kim, S.K.;Chae, S.W.;Choi, H.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.71-74
    • /
    • 1994
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony ingrowth and secondary long term fixation. Bone ingrowth depends strongly on relative micromotion and stress distributions at the interface. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone-prosthesis interface, Hence an accurate evaluation of interface behavior and stress/strain fields in the bone implant system may be relevant for better understanding of clinical situations and improving THA design. However, complete evaluation of load transfer in the bone remains difficult to assess experimentally, Hence, recently finite element method (FEM) was introduced in orthopaedic research field to fill the gap due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional numerical finite element model which is composed of totally 1179 elements off and 8 node blick. We also analyzed the micromotions at the bone-stem interface and mechanical behavior of existing bone prosthesis for a loading condition simulating the single leg stance. The result indicates that the values of relative motion for this well fit Multilock stem were $150{\mu}m$ in maximum, $82{\mu}m$ in minimum, and the largest relative motion developed in medial region of proximal femur with anterior-posterior direction. The proximal region of the bone was much larger in motion than the distal region and the stress pattern shows high stress concentration on the cortex near the tip of the stem. These findings indicates that the loading in the proximal femoral bone in the early postoperative situation can produce micromotions on the interface and clinically cementless TEA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF

Improved Side Information Generation using Field Coding for Wyner-Ziv Codec (Wyner-Ziv 부호화기를 위한 필드 부호화 기반 개선된 보조정보 생성)

  • Han, Chan-Hee;Jeon, Yeong-Il;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.10-17
    • /
    • 2009
  • Wyner-Ziv video coding is a new video compression paradigm based on distributed source coding theory of Slepian-Wolf and Wyner-Ziv. Wyner-Ziv coding enables light-encoder/heavy-decoder structure by shifting complex modules including motion estimation/compensation task to the decoder. Instead of performing the complicated motion estimation process in the encoder, the Wyner-Ziv decoder performs the motion estimation for the generation of side information in order to make the predicted signal of the Wyner-Ziv frame. The efficiency of side information generation deeply affects the overall coding performance, since the bit-rates of the Wyner-Ziv coding is directly dependent on side information. In this paper, an improved side information generation method using field coding is proposed. In the proposed method, top fields are coded with the existing SI generation method and bottom fields are coded with new SI generation method using the information of the top fields. Simulation results show that the proposed method improves the quality of the side information and rate-distortion performance compared to the conventional method.

Terminal Homing Guidance of Tactical Missiles with Strapdown Seekers Based on an Unscented Kalman Filter (스트랩다운 탐색기를 장착한 전술유도탄의 UKF 기반 종말호밍 유도)

  • Oh, Seung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.221-227
    • /
    • 2010
  • Recent development in seeker technology explores a new seeker design in which, with larger field-of-view (FOV), optical parts are strapped down to a body (hence, called as a body-fixed seeker or a strapdown seeker). This design has several advantages such as comparatively easier maintenance and calibration by removing complex mechanical moving parts, increasing reliability, and cost savings. On the other hand, the strapdown seeker involves difficulties in implementing guidance laws since it does not directly provide inertial LOS rates. Instead, information for generating guidance commands should be extracted by estimating missile/target relative motion utilizing target images on the image plane of a strapdown seeker. In this research, a new framework based on an unscented Kalman filter is developed for estimating missile/target relative motion on the simplified assumption of a point source target. Performance of a terminal guidance algorithm, in which guidance command is generated based on the estimated relative motion, is demonstrated by a missile/target engagement simulation.

Coherent motion of microwave-induced fluxons in intrinsic Josephson junctions of HgI$_2$-intercalated Bi$_2$Sr$_2$C aCu$_2$O$_{8+x}$ single crystals

  • Kim, Jin-Hee;Doh, Yong-Joo;Chang, Sung-Ho;Lee, Hu-Jong;Chang, Hyun-Sik;Kim, Kyu-Tae;Jang, Eue-Soon;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.65-65
    • /
    • 2000
  • Microwave response of intrinsic Josephson junctions in mesa structure formed on HgI2-intercalated Bi2Sr2CaCu2O8+x single crystals was studied in a wide range of microwave frequency. With irradiation of 73${\sim}$76 GHz microwave, the supercurrent branch becomes resistive above a certain onset microwave power. At low current bias, the current-voltage characteristics show linear behavior, while at high current bias, the resistive branch splits into multiple sub-branches. The voltage spacing between neighboring sub-branches increase with the microwave power and the total number of sub-branches is almost identical to the number of intrinsic Josephson junctions in the mesa. All the experimental results suggest that each sub-branch represents a specific mode of collective motion of Josephson vortices generated by the microwave irradiation. With irradiation of microwave of microwave of frequency lower than 20 GHz, on the other hand, no branch splitting was observed and the current-voltage characteristics exhibited complex behavior at hlgh blas currents. This result can be explained in terms of incoherent motion of Josephson vortices generated by non-uniform microwave irradiation.

  • PDF

A Fast Full-Search Motion Estimation Algorithm using Adaptive Matching Scans based on Image Complexity (영상 복잡도와 다양한 매칭 스캔을 이용한 고속 전영역 움직임 예측 알고리즘)

  • Kim Jong-Nam
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.949-955
    • /
    • 2005
  • In this Paper, we propose fast block matching algorithm by dividing complex areas based on complexity order of reference block and square sub-block to reduce an amount of computation of full starch(FS) algorithm for fast motion estimation, while keeping the same prediction quality compared with the full search algorithm. By using the fact that matching error is proportional to the gradient of reference block, we reduced unnecessary computations with square sub-block adaptive matching scan based image complexity instead of conventional sequential matching scan and row/column based matching scan. Our algorithm reduces about $30\%$ of computations for block matching error compared with the conventional partial distortion elimination(PDE) algorithm without any prediction quality, and our algorithm will be useful in real-time video coding applications using MPEG-4 AVC or MPEG-2.

Development of Sign Language Translation System using Motion Recognition of Kinect (키넥트의 모션 인식 기능을 이용한 수화번역 시스템 개발)

  • Lee, Hyun-Suk;Kim, Seung-Pil;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.235-242
    • /
    • 2013
  • In this paper, the system which can translate sign language through motion recognition of Kinect camera system is developed for the communication between hearing-impaired person or language disability, and normal person. The proposed algorithm which can translate sign language is developed by using core function of Kinect, and two ways such as length normalization and elbow normalization are introduced to improve accuracy of translating sign langauge for various sign language users. After that the sign language data is compared by chart in order to know how effective these ways of normalization. The accuracy of this program is demonstrated by entering 10 databases and translating sign languages ranging from simple signs to complex signs. In addition, the reliability of translating sign language is improved by applying this program to people who have various body shapes and fixing measure errors in body shapes.

Development of a Fall Detection System Using Fish-eye Lens Camera (어안 렌즈 카메라 영상을 이용한 기절동작 인식)

  • So, In-Mi;Han, Dae-Kyung;Kang, Sun-Kyung;Kim, Young-Un;Jong, Sung-tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.97-103
    • /
    • 2008
  • This study is to present a fainting motion recognizing method by using fish-eye lens images to sense emergency situations. The camera with fish-eye lens located at the center of the ceiling of the living room sends images, and then the foreground pixels are extracted by means of the adaptive background modeling method based on the Gaussian complex model, which is followed by tracing of outer points in the foreground pixel area and the elliptical mapping. During the elliptical tracing, the fish-eye lens images are converted to fluoroscope images. the size and location changes, and moving speed information are extracted to judge whether the movement, pause, and motion are similar to fainting motion. The results show that compared to using fish-eye lens image, extraction of the size and location changes. and moving speed by means of the conversed fluoroscope images has good recognition rates.

  • PDF