• Title/Summary/Keyword: complex geothermal system

Search Result 17, Processing Time 0.023 seconds

Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System (지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Park, Namseo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.

Economic Analysis of Various Residential Geothermal Heat Pump System Capacities (주택용 지열히트펌프 시스템의 용량 변화에 대한 경제성 비교 분석)

  • Lee, Chung-Kook;Suh, Seung-Jik;Kim, Jin-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • Geothermal heat pumps are known as the most efficient and environment-friendly heating and cooling system, and are also gaining acceptance in buildings. Building energy simulation program, EnergyPlus is used to calculate the energy consumption of residential buildings. This simulated energy consumption is essential for accurate economic analysis. Residential buildings with geothermal heat pumps have complex energy price structure. Electricity rates for residential buildings increase rapidly as the monthly use increases. This complex energy price structure makes the economic analysis complicated. The purpose of this study is to conduct economic comparison of residential geothermal heat pumps and provide a feasible approach in finding their economically feasible capacity.

A Performance Measurement and Evaluation of a 400RT Vertical type Geothermal System installed in a Complex Building Before Occupancy (복합용도 건물에 적용된 400RT급 수직형 지열시스템의 입주전 성능평가)

  • Hwang, Kwang-Il;Shin, Dong-Keol;Kim, Joong-Hun;Shin, Seung-Ho;Jung, Myoung-Kwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.7-14
    • /
    • 2008
  • 400RT geothermal system which is the biggest capacity among on-operations at present in Korea is measured and evaluated on 23rd${\sim}$26th Jan. 2008 during those days building is not allowed owners and/or tenants to move in. The geothermal system is consist with vertical-typed 112 geothermal heat exchangers which are installed circle-like 1 row with 4m interval, and has 16 units of 25USRT geothermal-source heat pump(GSHP)s. And each 5 units of circulation pump are running for geothermal heat exchangers and hot water supplies. The followings are the results. The temperatures at G.L. -70m of 2 boreholes are varied quite similarly. The average temperature difference between inlet and outlet of geothermal pipes is $4.1^{\circ}C$, and that of hot water supply is $3.2^{\circ}C$, of Zone 3's each 4 GSHPs when being operated. Despite temperature fluctuations by heating loads, the average temperature difference between main pipes of inlet and outlet of geothermal heat exchangers is measured as $4.1^{\circ}C$. This study propose "Geothermal System COP" which includes not only consumed electric power by compressor but also circulation pumps and auxiliary utilities. By comparing the geothermal system COP with GSHP's performance specification, it is clear that the performances of GHSPs of this site are satisfied with the specification.

A Study on the Seasonal Performances Evaluation of the Horizontal-type Geothermal Heat Exchanger Installed in the Foundation Slabs of Complex Building (주상복합 건축물의 기초 슬래브에 설치된 수평형 지열교환기의 계절별 성능평가)

  • Hwang, Kwang-Il;Woo, Sang-Woo;Kim, Joong-Hun;Shin, Seung-Ho;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2007
  • This study evaluates the seasonal performances of the horizontal-type geothermal heat exchanger(HGHEX) installed into the foundation slabs of the complex building located at Seoul. The geothermal system is consisted with totally 31,860m long HGHEX, 16 GSHPs (Ground-source Heat Pump) and 8 circulation pumps. This system supplies cooling and heating to the lobby(F1) and the common spaces(BF1). The average heat exchange temperature differences are $2.7^{\circ}C\;and\;2.5^{\circ}C$ in the summer, $1.5^{\circ}C\;and\;0.5^{\circ}C$ in the winter for the F1 and BF1 respectively. From these results, approximately 400Gcal and 180Gcal of geothermal energy are assumed to have been used during the summer and winter seasons respectively. As a conclusion, the geothermal system is reviewed as a effective utility for heating and cooling at the point of seasonal performances.

Analysis of Test Operations Effect of Open-Closed Loops Complex Geothermal System Combined with Groundwater Well (지하수정호 결합 복합지열시스템의 시범운영 효과분석)

  • Song, Jae-Yong;Kim, Ki-Joon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.475-488
    • /
    • 2018
  • This study evaluates geothermal system efficiency in terms of input power and heat exchange volume on the heat-source and load sides, by applying a combined open-closed type loop system comprising a geothermal system and a groundwater well to a cultivation site. In addition, this study analyzes the effects of heating and cooling for a complex geothermal system, by evaluating the temperatures of an external site and a cultivation site during operation. During cooling operations the heat exchange volume on the heat source side, average 90.0kW/h for an open type system with an input of 235L/minute groundwater, and 40.1kW/h for a closed type system with an input of 85L/minute circulating water, for a total average heat exchange volume of 130.1kW/h. The actual heat exchange volume delivered on the load side averages 110.4kW/h. The average EER by analysis of the geothermal system's cooling efficiency is 5.63. During heating operation analysis, the heat exchange volume on the heat source side, average 60.4kW/h in an open type system with an input of 266L/minute groundwater, and 22.4kW/h in closed type system with an input of 86L/minute circulating water, for a total average heat exchange volume of 82.9kW/h. The actual heat exchange volume delivered on the load side averages 112.0kW/h in our analysis. The average COP determined by analysis of the geothermal system's heating efficiency is 3.92. Aa a result of the tradeoff between the outside temperature and the inside temperature of the production facility and comparing the facility design with a combined well and open-closed loops geothermal(CWG) system, we determine that the 30RT-volume CWG system temperature are lower by $3.4^{\circ}C$, $6.8^{\circ}C$, $10.1^{\circ}C$ and $13.4^{\circ}C$ for ouside temperature is of $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$, respectively. Based on these results, a summer cooling effect of about $10^{\circ}C$ is expected relative to a facility without a CWG system as the outside temperature is generally ${\geq}30^{\circ}C$. Our results suggest that a complex geothermal system provides improvement under a variety of conditions even when heating conditions in winter are considered. Thus It is expected that the heating-cooling tradeoffs of complex geothermal system are improved by using water screen.

Evaluation of Applicability of Renewable Energy in Controlled Horticulture Farms -Centering on Economic Analysis of Geothermal.Solar Powered- (시설원예농가의 재생에너지 적용가능성평가 -지열.태양광의 경제성 분석을 중심으로-)

  • Kim, Tae-Ho;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.267-282
    • /
    • 2012
  • In this study, RPS system, one of the renewable energy support systems, is utilized for economic analysis of solar generation equipment and the fuel cost savings plan for controlled horticulture farms with high fuel-cost dependency and facility applicability were evaluated. On the exterior of the upper layer of glass greenhouse (9917$m^2$) of controlled horticulture farms using bunker C oil, half of the area (4958$m^2$) was utilized for theoretical installation and operation of 450kW-level solar power generator, and as the result, first, the effect of investment cost only of solar generation system was found to be quite excellent, but it was analyzed that there were limits to saving the fuel costs of the controlled horticulture farms. Second, when geothermal system was first introduced in the farm and solar system was additionally introduced, it was analyzed that the effect of introducing solar system was excellent. In order to apply such effects to the sites of farming, partial supplementation of RPS system which is being uniformly applied regardless of the purpose of renewable energy is necessary. When the subject of use directly install facilities where it is directly connected to national added-value such as food security created by the farming industry, it is necessary to introduce appropriate system that corresponds to such. Moreover, it was studied that the quick development of demonstrative complex that can practically evaluate the applicability of renewable energy in farming industry and interest and preparation of related institutions in financial support structure for its site application would lead to success.

Proposal of Analyis Method for PICV Characteristics Curve Using CFD in Hydronic System (밀폐형 수배관시스템에서 CFD를 활용한 복합밸브 특성곡선 해석 방법 제안)

  • Do, Gahyeon;Kim, Jinho;Park, Woopyeng;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.20-29
    • /
    • 2021
  • In this study, it is proposed that an analysis method using charatersistics curve of PICV in the CFD simulation for hydronic system. From the results, the pressure drop characteristics appeared in the region of PICV at a specified flow rate. And the CFD results are in good agreement with the experimental results. Proposed analysis method is proved that the characteristics of PICV applied to the hydronic system were properly applied in the flow analysis. This result can be applied to PICV in the complex hydronic systems. Therefore, the optimal selection of PICV in hydronic system contribute the building energy saving.

A Simulation Study on Effect Analysis of EMS Combined Control of Central Cooling and Heating System (중앙냉난방시스템의 EMS 복합제어 효과 분석에 관한 시뮬레이션 연구)

  • Jae-Yeob Song;Byung-Cheon Ahn
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.33-44
    • /
    • 2022
  • In this study, we analyze the existing heating and cooling operation method for an office-type complex building with a central heating and cooling system, and examine the effects of applying various EMS that can be applied according to the load size to save energy in the building. For this purpose, simulation analysis was performed. As a control method, reset control of chilled water, hot water, cooling water and supply air temperatures, optimal start/stop of heat source, and number of heat source control were applied according to the load size, and energy consumption was analyzed accordingly. In addition, when all of these control methods were applied, the overlapping energy saving effect was finally confirmed. As a result, it was possible to confirm the energy saving effect when EMS for reset control and heat source control were applied compared to the existing control method of the heating and cooling system, and the effect for the case of using all these control methods in combination was also confirmed.

A study on The Real-Time Implementation of Intelligent Control Algorithm for Biped Robot Stable Locomotion (2족 보행로봇의 안정된 걸음걸이를 위한 지능제어 알고리즘의 실시간 실현에 관한 연구)

  • Nguyen, Huu-Cong;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.224-230
    • /
    • 2015
  • In this paper, it is presented a learning controller for repetitive walking control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured due to the walking period through the intelligent control, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of intelligent control to biped robotic motion is shown via dynamic simulation with 25-DOF biped walking robot.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Power Supply Regulation (부하변동에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Ro, Jeong-Geun;Yon, Kwang-Seok;Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.80-86
    • /
    • 2011
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. This is done by supplying a constant heat power into a borehole heat exchanger. There are two methods to supply a constant heat power. One is to employ the electricity provided by Korea Electric Power Corporation(KEPCO). The other is to use electricity generated by a generator. In this study, the power supply regulation was found to reduce when the electricity generated by the generator was used. This is because the generator evaluated with the power supply characteristically reduces the power supply regulation between an overload and a complex using. But it sometimes occurs a power supply regulation in In-situ thermal response test. In this case getting of k,$R_b$ requires delay times and restored normal state. However, the effect of the delay times and restored normal state on the soil thermal conductivity and borehole thermal resistance is very small. Therefore it is possible to use a generally accepted delay times and restored normal state in the analysis. In this work, it is also shown that an acceptable range of ${\Delta}k$, ${\Delta}R_b$ for normal state and regulation state might be approximately 0.01-0.16W/m k, and -0.004-0.007m K/W, respectively. Thus, restored normal state of power supply regulation is valuable to recommend.