• Title/Summary/Keyword: complex geology

Search Result 284, Processing Time 0.027 seconds

Geochemical Occurrence of Uranium and Radon-222 in Groundwater at Test Borehole Site in the Daejeon area (대전지역 시험용 시추공 지하수내 우라늄 및 라돈-222의 지화학적 산출특성)

  • Jeong, Chan Ho;Ryu, Kun Seok;Kim, Moon Su;Kim, Tae Sung;Han, Jin Suk;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.171-186
    • /
    • 2013
  • A drilling project was undertaken to characterize the geochemical relationship and the occurrence of radioactive materials at a test site among public-use groundwaters previously known to have high occurrence of uranium and radon-222 in the Daejeon area. A borehole (121 m deep) was drilled and core rocks mainly consist of two-mica granite, and associated with pegmatite and dykes of intermediate composition. The groundwater samples collected at six different depths in the borehole by a double-packed system showed the pH values ranging from neutral to alkaline (7.10-9.3), and electrical conductivity ranging from 263 to 443 ${\mu}S/cm$. The chemical composition of the borehole groundwaters was of the $Ca-HCO_3(SO_4+Cl)$ type. The uranium and Rn-222 contents in the groundwater were 109-1,020 ppb and 9,190-32,800 pCi/L, respectively. These levels exceed the regulation guidelines of US EPA. The zone of the highest groundwater uranium content occurred at depths of 45 to 55m. The groundwater chemistry in this zone (alkaline, oxidated, and high in bicarbonate) is favorable for the dissolution of uranium into groundwater. The dominant uranium complex in groundwater is likely to be $(UO_2CO_3)^0$ or $(UO_2HCO_3)^+$. Radon-222 content in groundwater shows an increasing trend with depth. The uranium and thorium contents in the core were 0.372-47.42 ppm and 0.388-11.22 ppm, respectively. These levels are higher values than those previously been reported in Korea. Microscopic observations and electron microprobe analysis(EPMA) revealed that the minerals containing U and Th are monazite, apatite, epidote, and feldspar. U and Th in these minerals are likely to substitute for major elements in crystal lattice.

A Seismic Study on Muddy Sediment Deposits in the Northern Shelf of the East China Sea (동중국해 북부대륙붕에 발달한 니질 퇴적체의 탄성파 연구)

  • Choi Dong-Lim;Lee Tae-Hee;Yoo Hae-Soo;Lim Dhong-Il;Huh Sik;Kim Kwang-Hee
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.633-642
    • /
    • 2005
  • We present the sedimentary sequence and distribution pattern of the late Holocene muddy deposits in the northern East China Sea shelf using the high-resolution 'Chirp' profiles. The seismic sedimentary sequence overlying acoustic basement (basal reflector-B) can be divided into two depositional units (Unit 1 and 2) bounded by erosional bounding surface (mid reflector-M). The lower Unit 1 above basal reflector-H is characterized by the acoustically parallel to subparallel reflections and channel-fill facies. The upper Unit 2, up to 7 m in thickness, shows seismically semi-transparent seismic facies and lenticular body form. On the base of sequence stratigraphic concept, these two sediment units have developed during transgression and highstand period, respectively, since the last sea-level lowstand. The transgressive systems tract (Unit 1) lie directly on the sequence boundary (reflector B) that have farmed during the last glacial maximum. The transgressive systems tract in this study consists mostly of complex of delta, fluvial, and tidal deposits within the incised valley estuary system. The maximum flooding surface (reflector M) corresponding to the top surface of transgressive systems tract is obviously characterized by erosional depression. The highstand systems tract (Unit 2) above maximum flooding surface is made up of the mud patch filled with the erosional depression. The high-stand mud deposits showing a circle shape just like a typhoon symbol locates about 140 km off the south of Cheju Island with water depth of $60\~90m$. Coverage area and total sediment volume of the mud deposits are about $3,200km^2$ and $10.7\times10^9\;m^3$, respectively. The origin of the mud patch is interpreted as a result of accumulating suspended sediments derived from the paleo-Yellow and/or Yangtze Rivers. The circular distribution pattern of the mud patch appears to be largely controlled by the presence of cyclonic eddy in the northern East China Sea.

About Short-stacking Effect of Illite-smectite Mixed Layers (일라이트-스멕타이트 혼합층광물의 단범위적층효과에 대한 고찰)

  • Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Illite-smectite mixed layers (I-S) occurring authigenically in diagenetic and hydrothermal environments reacts toward more illite-rich phases as temperature and potassium ion concentration increase. For that reason, I-S is often used as geothermometry and/or geochronometry at the field of hydrocarbons or ore minerals exploration. Generally, I-S shows X-ray powder diffraction (XRD) patterns of ultra-thin lamellar structures, which consist of restricted numbers of sillicate layers (normally, 5 ~ 15 layers) stacked in parallel to a-b planes. This ultra-thinness is known to decrease I-S expandability (%S) rather than theoretically expected one (short-stacking effect). We attempt here to quantify the short stacking effect of I-S using the difference of two types of expandability: one type is a maximum expandability ($%S_{Max}$) of infinite stacks of fundamental particles (physically inseparable smallest units), and the other type is an expandability of finite particle stacks normally measured using X-ray powder diffraction (XRD) ($%S_{XRD}$). Eleven I-S samples from the Geumseongsan volcanic complex, Uiseong, Gyeongbuk, have been analyzed for measuring $%S_{XRD}$ and average coherent scattering thickness (CST) after size separation under 1 ${\mu}m$. Average fundamental particle thickness ($N_f$) and $%S_{Max}$ have been determined from $%S_{XRD}$ and CST using inter-parameter relationships of I-S layer structures. The discrepancy between $%S_{Max}$ and $%S_{XRD}$ (${\Delta}%S$) suggests that the maximum short-stacking effect happens approximately at 20 $%S_{XRD}$, of which point represents I-S layer structures consisting of ca. average 3-layered fundamental particles ($N_f{\approx}3$). As a result of inferring the $%S_{XRD}$ range of each Reichweite using the $%S_{XRD}$ vs. $N_f$ diagram of Kang et al. (2002), we can confirms that the fundamental particle thickness is a determinant factor for I-S Reichweite, and also that the short-stacking effect shifts the $%S_{XRD}$ range of each Reichweite toward smaller $%S_{XRD}$ values than those that can be theoretically prospected using junction probability.

Fractionation and Rare-Element Mineralization of Kenticha Pegmatite, Southern Ethiopia (에티오피아 남부 켄티차 페그마타이트의 분화양상과 희유원소 광화작용)

  • Kim, Eui-Jun;Kim, Soo-Young;Moon, Dong-Hyeok;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.375-390
    • /
    • 2013
  • The Kenticha rare-element (Ta-Li-Nb-Be) mineralized zone is located in ophiolitic fold and thrust complex of southern Ethiopia and was firstly discovered by joint exploration program of Ethiopia-Soviet in 1980s. It includes Dermidama, Kilkele, Shuni Hill, Kenticha, and Bupo pegmatites from south to north. The Kenticha pegmatite intruded parallel to NS-striking serpentinite and talc-chlorite schist, and is exposed approximately 2 km length and 400-700 m width. The Kenticha pegmatite is internally zoned and subdivided into lower quartz-muscovite-albite granite, intermediate muscovite-quartz-albite-microcline pegmatite, and upper spodumene-quartz-albite pegmatite, based on their mineral assemblage. The major, trace elements (e.g., Rb, Li, Nb, Ta, and Ga), and element ratios (e.g., K/Rb, Nb/Ta, Mg/Li, and Al/Ga) suggest that the fractionation and solidification of pegmatite have progressed from the lower towards upper pegmatite. In contrast, unlike general magmatic fractionation, Mg/Li ratios of the Kenticha pegmatite tend to be increased towards the upper pegmatite. It may result from post-magmatic hydrothermal alteration and/or interaction with upper ultramafic rock. Rare-element mineralization in Kenticha pegmatite concentrates on the upper pegmatite, which contains up to 3.0 wt % $Li_2O$, 3,780 ppm Rb, 111 ppm Cs, 1,320 ppm Ta, and 332 ppm Nb. Ore minerals in Kenticha pegmatite mostly include tantalite, spodumene, and lepidolite, and tantalite has an association with coarser quartz-spodumene and relatively fine sacchroidal albite. The tantalite is classified into Mn-tantalite as a function of $Mn^*[Mn/(Mn+Fe)]$ and $Ta^*[Ta/(Ta+Nb)]$ values. Its compositions ($Mn^*$, $Ta^*$, and Nb/Ta) between coarse and fine tantalites are different and the former is strongly enriched in Ta and depleted in Nb compared to latter one. In conclusion, rare-element mineralization in the Kenticha pegmatite may has occurred in the latest stage of magmatic fractionation.

Geochemical Variation of Hwangsan Volcanic Complex by Large Hydrothermal Alteration (대규모 열수변질작용에 따른 황산 화산암복합체의 지구화학적 변화특성)

  • Kim, Eui-Jun;Hong, Young-Kook;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.95-107
    • /
    • 2011
  • The Hwangsan volcanic rocks, hosting the Moisan epithermal Au-Ag deposit arc widely distributed throughout the Seongsan district, and associated with large hydrothermal alteration. They were analyzed as the Moisan and around voleanic rocks, and most of them show dacitic to rhyolitic compositions. Hydrothermal alteration related to epithermal system causes the host rocks to show the geochemical variation due to high mobility of alkali elements. These features can be applied for quantitative estimates of alteration intensity. Alteration intensity of volcanic rocks from the Moisan ranges from subtle to intense, based on AI vs. $Na_2O$ diagram. The pattern that ($CaO+Na_2O$) content decrease with increasing $K_2O$ content results from sericitic alteration, in which hydrothermal fluids continually provide $K^+$ into country rocks but remove $Ca^{2+}$ and $Na^{2+}$ of feldspars within country rocks. The decrease of ($CaO+Na_2O$) with decreasing $K_2O$ in some samples from the Moisan may be caused by advanced argillic alteration that all alkali elements are entirely removed from country rocks by acid hydrothermal fluids. Two alteration trends, based on Al and CCPI alteration indices suggest both sericitic alterations of feldsaprs to illite and sericite+chlorite$^{\circ}{\ae}$pyritc alteration of high Mg and Fe activities. Trace and Rare Earth Elements patterns show the similar geochemical variation related to hydrothermal alteration. Of LIL elements, strong depletion of $Sr^{2+}$, substituting for $Ca^{2+}$ in feldspars, appears to be resulted from removal of $Ca^{2+}$, during replacement of feldspars to alumino-silicates or phyllo silicates minerals by hydrothermal fluids. Relatively low total REEs contents (Moisan: 119-182 ppm; Seongsan: 111-209 ppm) and gently negative slopes suggest that significant mobility of LREEs appear to occur during hydrothermal alteration.

Copper Mineralization in the Haman-Gunbuk Area, Gyeongsangnamdo-Province: Fluid Inclusion and Stable Isotope Study (경상남도 함안-군북지역의 동광화작용: 유체포유물 및 안정동위원소 연구)

  • 허철호;윤성택;최상훈;최선규;소칠섭
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.75-87
    • /
    • 2003
  • The Haman-Gunbuk mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Major ore minerals, magnetite, scheelite, molybdenite and chalcopyrite, together with base-metal sulfides and minor sulfosalts, occur in fissure-filling tourmaline, quartz and carbonates veins contained within Cretaceous sedimentary and volcanic rocks anu/or granodiorite (118{\pm}$3.0 Ma). The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage 1, tourmaline+quartz+Fe-Cu ore mineralization; Stage II, quartz+sulfides+sulfosalts+carbonates; Stage 111, barren calcite. Earliest fluids are recorded in stage I and early por-tions of stage II veins as hypersaline (35~70 equiv. wt.% NaCl+KCl) and vapor-rich inclusions which homogenize from ~30$0^{\circ}C$ to $\geq$50$0^{\circ}C$. The high-salinity fluids are complex chloride brines with significant concentrations of sodium, potassium, iron, copper, and sulfur, though sulfide minerals are not associated with the early mineral assemblage produced by this fluid. Later solutions circulated through newly formed fractures and reopened veins, and are recorded as lower-salinity(less than ~20 equiv. wt.% NaCl) fluid inclusions which homogenize primarily from ~200 to 40$0^{\circ}C$. The oxygen and hydrogen isotopic compositions of fluid in the Haman-Gunbuk hydrothermal system represents a progressive shift from magmatic-hydrothermal dominance during early mineralization stage toward meteoric-hydrothermal dominance during late mineralization stage. The earliest hydrothermal fiuids to circu-late within the granodiorite stock localiring the ore body at Haman-Gunbuk could have exsolved from the crystal-lizing magma and unmixed into hypersaline liquid and $H_2O$-NaCl vapor. As these magmatic fluids moved throughfractures, tourmaline and early Fe, W, Mo, Cu ore mineralization occurred without concomitant deposition of othersulfides and sulfosalts. Later solutions of dominantly meteoric origin progressively formed hypogene copper and base-metal sulfides, and sulfosalt mineralization.

Geological Structure and Deformation History in the Gwangju area, Gyeonggi-do, Korea (경기도 광주시 일대의 지질구조와 변형사)

  • Lee Hee-Kwon;Kim Man-Kwang
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.108-115
    • /
    • 2005
  • Gyeonggi metamorphic complex in the Gwangju area include banded biotite gneiss and quartzofeldspathic gneiss. Detailed structural analysis suggests that structural elements in the study area were formed by at least five phase of deformations. Penetrative compositional foliations(S1) formed in the banded gneiss during the first metamorphism and deformation (D1). After intrusion of plutonic rocks, the second deformation (D2) produced S2 foliations in the banded gneiss and quartzofeldspathic gneiss during the second metamorphism. D3 structures are represented by isoclinal folds (F3) whose axial surfaces are parallel to S3 foliations. The N-S oriented shortening (D4) was accommodated by closed upright F4 fold with about 100m of axial surface separation. F4 fold is refolded by regional F5 folding resulting in different orientation and fold style of F4 fold according to the position of F5 fold. The F4 fold with tight interlimb angle is subparallel to the axial surface (north-south) of F5 fold in the core of the F5 fold. In contrast the F4 fold trends northeast in the western limb and northwest in the eastern limb of F5 fold. The interlimb angle is larger in the limbs than that in the core of F5 fold. The trace of foliations is constrained by mainly F4 and F5 folds. Joint fanning around fold is developed in the limbs of F5 fold and bc joints are dominant in the hinge area of F5 fold. A strike-slip fault had developed in tile central part of the study area after F5 folding. The orientation of joint and foliation is rotated anticlockwise about $15^{\circ}$ by the landslide occurred during the Quaternary.

Mesozoic Granitoids and Associated Gold-Silver Mineralization in Korea (한국 중생대 화강암류와 이에 수반된 금-은광화작용)

  • 최선규;박상준;최상훈;신홍자
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2001
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. During the Daebo igneous activities (about 200-130 Ma) coincident with orogenic time, gold mineralization took place between 197 and 127 Ma. The Jurassic deposits commonly show several characteristics: prominent association with pegmatites, low Ag/Au ratios in the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, Au-rich eIectrum. pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (120-60 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high AgiAu ratios in the ore concentrates, and abundance of ore minerals including base-metal sulfides, Ag sulfides, native silver, Ag sulfosalts and Ag tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems. The Jurassic Au-dominant deposits were formed at the relatively high temperature (about 300 to 450$^{\circ}$C) and deep-crustal level (>3.0 kb) from the hydrothermal fluids containing more amounts of magmatic waters (3180; 5-10 %0). It can be explained by the dominant ore-depositing mechanisms as CO2 boiling and sulfidation, suggestive of hypo/mesothermal environments. In contrast, mineralization of the Cretaceous Au-Ag type (108-71 Ma) and Agdominant type (98-71 Ma) occurred at relatively low temperature (about 200 to 350$^{\circ}$C) and shallow-crustal level «1.0 kb) from the ore-fonning fluids containing more amounts of less-evolved meteoric waters (15180; -10-5%0). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complexities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epilmesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit type.

  • PDF

Geochemistry and Genesis of Hydrothermal Cu Deposits in the Gyeongsang Basin, Korea : Hwacheon-ri Mineralized Area (경상분지내 열수동광상의 지화학 및 성인연구 : 화천리지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.337-350
    • /
    • 1995
  • The Hwacheon-ri mineralized area is located within the Cretaceous Gyeongsang Basin of the Korean peninsula. The mineralized area includes the Hwacheon, Daeweon, Kuryong and Cheongryong mines. Each of these mines occurs along copper-bearing hydrothermal quartz veins that crosscut late Cretaceous volcanic rocks, although some disseminated ores in host rocks also exist locally. Mineralization can be separated into three distinct stages (I, II, and III) which developed along preexisting fracture zones. Stage I is ore-bearing, whereas stages II and III are barren. The main phase of ore mineralization, stage I, can be classified into three substages (Ia, Ib and Ic) based on ore mineral assemblages and textures. Substage Ia is characterized by pyrite-arsenopyrite-molybdenite-pyrrhotite assemblage and is most common at the Hwacheon deposit. Substage Ib is represented by main precipitation of Cu, Zn, and Pb minerals. Substage Ic is characteristic of hematite occurrence and is shown only at the Kuryong and Cheongryong deposits. Some differences in the ore mineralization at each mine in the area suggest that the evolution of hydrothermal fluids in the area varied in space (both vertically and horizontally) with respect to igneous rocks relating the ore mineralization. Fluid inclusion data show that stage I ore mineralization mainly occurred at temperatures between ${\approx}350^{\circ}$ and ${\approx}200^{\circ}C$ from fluids with salinities between 9.2 and 0.5 wt.% eq. NaCl. In the waning period of substage Ia, the high temperature and salinity fluid gave way to progressively cooler, more dilute fluids of later substage Ib and Ic (down to $200^{\circ}C$, 0 wt.% NaCl). There is a systematic decrease in the calculated ${\delta}^{18}O_{H2O}$ values with paragenetic time in the Hwacheon-ri hydrothermal system from values of ${\approx}2.7$‰ for substage Ia, through ${\approx}-2.8$‰ for substage Ib, to ${\approx}-9.9$‰ for substage Ic. The ${\delta}D$ values of fluid inclusion water also decrease with decreasing temperature (except for the Daeweon deposit) from -62‰ (substage Ia) to -80‰ (substage Ic and stage III). These trends are interpreted to indicate the progressive cooler, more oxidizing unexchanged meteoric water inundation of an initial hydrothermal system which is composed of highly exchanged meteoric water. Equilibrium thermodynamic interpretation of the mineral assemblages with the variation in amounts of chalcopyrite through the paragenetic time, and the evolution of the Hwacheon-ri hydrothermal fluids indicate that the solubility of copper chloride complexes in the hydrothermal system was mainly controlled by the variation of temperature and $fo_2$ conditions.

  • PDF

Hidden Porphyry-Related Ore Potential of the Geumseong Mo Deposit and Its Genetic Environment (금성 몰리브데늄광상의 잠두 반암형 광체에 대한 부존가능성과 성인적 환경)

  • Choi, Seon-Gyu;Park, Jung-Woo;Seo, Ji-Eun;Kim, Chang-Seong;Shin, Jong-Ki;Kim, Nam-Hyuck;Yoo, In-Kol;Lee, Ji-Yun;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.1-14
    • /
    • 2007
  • The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).