• Title/Summary/Keyword: complex fueling station

Search Result 5, Processing Time 0.018 seconds

A Study on the Quantitative Risk Assessment of Hydrogen-LPG Combined Refueling Station (수소-LPG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung Kyu
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a quantitative risk assessment was carried out for a hydrogen complex station. The complex fueling station to be evaluated was hydrogen-LPG, and the components of each station were analyzed and the risk was evaluated. The final risk is assessed by individual and societal risks, taking into account the impact of damage and the frequency of accidents. As a result of individual risk calculation for the hydrogen-LPG fueling station that is the subject of this study, the hydrogen-LPG type fueling station does not show the unacceptable hazardous area (> 1 × 10E-3) proposed by HSE. The level of individual risk for both the public and the worker is within acceptable limits. In societal risk assessment, the model to be interpreted shows the distribution of risks in an acceptable range(ALARP, As Low As Reasonably Practicable). To ensure improved safety, we recommend regular inspections and checks for high-risk hydrogen reservoirs, dispensers, tube trailer leaks, and LPG vapor recovery lines.

A Trends Analysis on Safety for CNG/HCNG Complex Fueling Station (CNG/HCNG 복합충전소의 안전에 관한 동향분석)

  • Lee, Seung-Hyun;Kang, Seung-Kyu;Sung, Jong-Gyu;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this research, the safety trends and technologies of HCNG, a mixture of hydrogen and natural gas, are analyzed. This is an attracting alternative fuels to meet the strengthened automotive exhaust gas emission standards. HCNG is very important opportunities and challenges in that it is available the existing CNG infrastructures, meets the strengthened emission standards, and the technical, social bridge of the coming era of hydrogen. It is essential for the commercialization of HCNG that hydrogen - compressed natural gas blended fuel for use in preparation of various safety considerations included accidents scenario, safety distance, hydrogen attack, ignition sources and fire detectors are examined. Risk assessments also are suggested as one of permission procedure for HCNG filling station.

A Study on Analysis of Operation Data Monitoring Based on Demonstration of Hydrogen Refueling Station (수소 복합스테이션 실증기반 운영데이터 모니터링 분석 연구)

  • KIM, DONG-HWAN;PARK, SONG-HYUN;KU, YEON-JIN;KIM, PIL-JONG;HUH, YUN-SIL
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.505-512
    • /
    • 2019
  • According to the "hydrogen economy roadmap" announced recently by the government, fuel cell electric vehicle diffusion and hydrogen refueling station construction are actively being carried out to prepare for the hydrogen economy era. The station will be expanded by introducing various charging station models such as hydrogen complex charging station, package, and mobile. Accordingly, the study on the safety demonstration of the charging station and related regulations should be compromised. The purpose of this study is to collect monitoring data during charging according to the distinct four seasons in Korea, and to use it as safety demonstration data by analyzing the charging status, charging rate and charging time during charging.

A Study on the Quantitative Risk Assessment of Hydrogen-CNG Complex Refueling Station (수소-CNG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung-Kyu;Huh, Yun-Sil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a quantitative risk assessment for hydrogen-CNG complex refueling stations. Individual and societal risks were calculated by deriving accident scenarios that could occur at hydrogen and CNG refueling stations and by considering the frequency of accidents occurring for each scenario. As a result of the risk assessment, societal risk levels were within the acceptable range. However, individual risk has occurred outside the allowable range in some areas. To identify and manage risk components, high risk components were discovered through risk contribution analysis. High risks at the hydrogen-CNG complex refueling station were large leakage from CNG storage containers, compressors, and control panels. The sum of these risks contributed to approximately 88% of the overall risk of the fueling station. Therefore, periodic and intensive safety management should be performed for these high-risk elements.

Analysis of Operation Data Monitoring for LPG-Hydrogen Multi-Fueling Station (LPG-수소복합충전소 운영데이터 모니터링 분석)

  • Park, Songhyun;Kim, Donghwan;Ku, Yeonjin;Kim, Piljong;Huh, Yunsil
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2019
  • In response to the recent increase in demand for hydrogen stations, the Ministry of Trade and Industry has enacted and promulgated special notifications to enable the installation of hydrogen stations in the form of the combined complex in existing automotive fuel supply facilities such as LPG, CNG, and gas stations. Hydrogen multi energy filling stations haven't been operated yet in Korea till the establishment of special standards, so it is necessary create special standards by considering all Korean environmental characteristics such as four seasons and daily crossings. In this study, we collected and analyzed the charging data of Ulsan LPG-Hydrogen Multi Fueling Station installed for the first time in Korea. The data are hourly temperature and pressure data from compressors, storage vessels and dispensers. We used the data collected for a year, including the highest temperature and the lowest temperature in Ulsan to compare seasonal characteristics. As a result, it was found that the change of the outside temperature affects the initial temperature of the vehicle's container of the hydrogen car, which finally affects the charging time and the charging speed of the vehicle. There was no effect on vehicle containers because the limit temperature suggested by the Korean Hydrogen Station Standard(KGS FP217) and the US Filling Protocol(SAE J2601) was not exceeded.