• 제목/요약/키워드: complex electrodeposition

검색결과 15건 처리시간 0.026초

Label-free and sensitive detection of purine catabolites in complex solutions by surface-enhanced raman spectroscopy

  • Davaa-Ochir, Batmend;Ansah, Iris Baffour;Park, Sung Gyu;Kim, Dong-Ho
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.342-352
    • /
    • 2022
  • Purine catabolite screening enables reliable diagnosis of certain diseases. In this regard, the development of a facile detection strategy with high sensitivity and selectivity is demanded for point-of-care applications. In this work, the simultaneous detection of uric acid (UA), xanthine (XA), and hypoxanthine (HX) was carried out as model purine catabolites by surface-enhanced Raman Spectroscopy (SERS). The detection assay was conducted by employing high-aspect ratio Au nanopillar substrates coupled with in-situ Au electrodeposition on the substrates. The additional modification of the Au nanopillar substrates via electrodeposition was found to be an effective method to encapsulate molecules in solution into nanogaps of growing Au films that increase metal-molecule contact and improve substrate's sensitivity and selectivity. In complex solutions, the approach facilitated ternary identification of UA, XA, and HX down to concentration limits of 4.33 𝜇M, 0.71 𝜇M, and 0.22 𝜇M, respectively, which are comparable to their existing levels in normal human physiology. These results demonstrate that the proposed platform is reliable for practical point-of-care analysis of biofluids where solution matrix effects greatly reduce selectivity and sensitivity for rapid on-site disease diagnosis.

Study of complex electrodeposited thin film with multi-layer graphene-coated metal nanoparticles

  • Cho, Young-Lae;Lee, Jung-woo;Park, Chan;Song, Young-il;Suh, Su-Jeong
    • Carbon letters
    • /
    • 제21권
    • /
    • pp.68-73
    • /
    • 2017
  • We have demonstrated the production of thin films containing multilayer graphene-coated copper nanoparticles (MGCNs) by a commercial electrodeposition method. The MGCNs were produced by electrical wire explosion, an easily applied technique for creating hybrid metal nanoparticles. The nanoparticles had average diameters of 10-120 nm and quasi-spherical morphologies. We made a complex-electrodeposited copper thin film (CETF) with a thickness of $4.8{\mu}m$ by adding 300 ppm MGCNs to the electrolyte solution and performing electrodeposition. We measured the electric properties and performed corrosion testing of the CETF. Raman spectroscopy was used to measure the bonding characteristics and estimate the number of layers in the graphene films. The resistivity of the bare-electrodeposited copper thin film (BETF) was $2.092{\times}10^{-6}{\Omega}{\cdot}cm$, and the resistivity of the CETF after the addition of 300 ppm MGCNs was decreased by 2% to ${\sim}2.049{\times}10^{-6}{\Omega}{\cdot}cm$. The corrosion resistance of the BETF was $9.306{\Omega}$, while that of the CETF was increased to 20.04 Ω. Therefore, the CETF with MGCNs can be used in interconnection circuits for printed circuit boards or semiconductor devices on the basis of its low resistivity and high corrosion resistance.

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3118-3122
    • /
    • 2010
  • The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.

나노결정질 Ni-W 합금전착의 내부응력에 미치는 공정조건 변수의 영향 (Influences of Electrodeposition Variables on the Internal Stess of Nanocrystalline Ni-W Films)

  • 김경태;이정자;황운석
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.275-279
    • /
    • 2012
  • Ni-W alloy deposits have lately attracted the interest as an alternative surface treatment method for hard chromium electrodeposits because of higher wear resistance, hardness at high temperature, and corrosion resistance. This study deals with influences of process variables, such as electodeposition current density, plating temperature and pH, on the internal stress of Ni-W nanocrystalline deposits. The internal stress was increased with increasing the applied current density. With increasing applied current density, the grain size of the deposit decreases and concentration of hydrogen in the deposit increases. The subsequent release of the hydrogen results in shrinkage of the deposit and the introduction of tensile stress in the deposit. Consequently, for layers deposited at high current density, cracking occurs readily owing to high tensile stress value. By increasing the temperature of the electrodeposition from $60^{\circ}C$ to $80^{\circ}C$, the internal stress was decreased. It seems that an increase in the number of active ions overcoming the activation energy at elevated temperature caused a decline in the concentration polarization and surface diffusion. It decreased the level of hydrogen absorption due to the lessened hydrogen evolution reaction. Therefore, the lower level of hydrogen absorption degenerated the hydride on the surface of the electrode, resulting in the reduction of the internal stress of the deposits. By increasing the pH of the electrodeposition from 5.6 to 6.8, the internal stress in the deposits were slightly decreased. It is considered that the decrease in internal stess of deposits was due to supply of W complex compound in cathode surface, and hydrogen ion resulted from decrease of activity.

구리 전기 도금에 Thiourea가 미치는 효과 (Effect of Thiourea on the Copper Electrodeposition)

  • 이주열;임성봉;황양진;이규환
    • 한국표면공학회지
    • /
    • 제43권6호
    • /
    • pp.289-296
    • /
    • 2010
  • The effect of organic additives, thiourea (TU), on the copper electroplated layer of large rectangular size was investigated through physical and various electrochemical techniques. It was found that TU had strong adsorption characteristics on the Ni substrate and affected the initial electroplating process by inducing surface reaction instead of mass transfer in the bulk solution. TU additives had its critical micelle concentration at 200 ppm in copper sulphate solution and showed abrupt change in morphological and electrochemical impedance spectroscopic results around this concentration, which could be related with the destruction of adsorption structure of TU-Cu(I) complex formed at the Ni substrate surface. By conducting a commercial electroplating simulation, when TU additives was included at cmc in the plating solution, it acted as a depolarizer for copper electrodeposition and was effective to reduce the unevenness of copper deposits between centre and edge region at high current densities of 10 ASD.

카드뮴 전해석출에서의 이성분첨가물계의 효과 (The Effect of Some Binary Additive Systems in the Electrodeposition of Cadmium)

  • 이경호
    • 분석과학
    • /
    • 제9권2호
    • /
    • pp.161-167
    • /
    • 1996
  • 이성분계 첨가물을 이용한 카드뮴 석출과 수소 생성의 상대족인 속도를 조절할 수 있는 가능한 방법에 대하여 조사하였다. 수소를 발생하는 물의 전기환원을 억제하는 소수성 필름을 형성할 수 있는 벤질 알코올을 첨가제 중의 하나로 선택하였다. 다른 한 가지 첨가제는 카드뮴(II) 이온의 친수성을 약화시킴으로써 소수성 벤질 알코올 필름층을 쉽게 가로질러 환원극에 전착시킬 수 있는 것을 선택하였다. 전압 전류 효율 연구로부터 이온쌍과 착물 첨가제가 벤질 알코올 필름 존재하에서 카드뮴의 환원을 촉진시킬 수 있다는 것을 확인하였다. 벤질 알코올 필름은 나트륨 이온과 카드뮴의 염화착물을 형성하는 이온쌍을 얻기에 충분하도록 전극 주위의 유전상수를 낮추고, 카드뮴의 환원을 촉진시킨다. 이러한 환원의 촉진은 염화물이 존재하지 않는 황산염 용액에서는 일어나지 않는다. 왜냐하면 카드뮴은 본래 아쿠아 착물과 이온쌍으로 존재하여 카드뮴의 환원을 촉진시키지 못하고 환원을 방해시키기 때문이다.

  • PDF

Growth and Electrochemical Behavior of Poly[Ni(saldMp)] on Carbon Nanotubes as Potential Supercapacitor Materials

  • Zhang, Yakun;Li, Jianling;Kang, Feiyu;Wang, Xindong;Ye, Feng;Yang, Jun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1972-1978
    • /
    • 2012
  • The polymer of (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), Ni(saldMp), was deposited on multi-walled carbon nanotubes (MWCNTs) substrate by the route of potential linear sweep. The nano structures of poly[Ni(saldMp)] have been obtained by adjusting the monomer concentration of 0.1, 0.2, 0.5, 1.0 and 1.5 mmol $L^{-1}$. The poly[Ni(saldMp)] prepared in acetonitrile solution with monomer concentration of 1.0 mmol $L^{-1}$ shows the fastest growth rate. The effects of potential window on charge-discharge efficiency and electrodeposition scan number on capacitance performance were discussed. Poly[Ni(saldMp)] prepared with less electrodeposition scans exhibits higher capacitance, but this goes against the improvement of the whole electrode capacitance. Sample with 8 deposition scans is the best compromise with the geometric specific capacitance 3.53 times as high as that of pure MWCNTs, and 1.24 times for the gravimetric specific capacitance under the test potential window 0.0-1.0 V.

Electrochemical Synthesis of TiO2 Photocatalyst with Anodic Porous Alumina

  • Hattori, Takanori;Fujino, Takayoshi;Ito, Seishiro
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.593-600
    • /
    • 2007
  • Aluminum was anodized in a $H_2SO_4$ solution, and titanium (IV) oxide ($TiO_2$) was electrodeposited into nanopores of anodic porous alumina in a mixed solution of $TiOSO_4$ and $(COOH)_2$. The photocatalytic activity of the prepared film was analyzed for photodegradation of methylene blue aqueous solution. Consequently, we found it was possible to electrodeposit $TiO_2$ onto anodic porous alumina, and synthesized it into the nanopores by hydrolysis of a titanium complex ion under AC 8-9 V when film thickness was about $15-20{\mu}m$. The photocatalytic activity of $TiO_2$-loaded anodic porous alumina ($TiO_2/Al_2O_3$) at an impressed voltage of 9 V was the highest in every condition, being about 12 times as high as sol-gel $TiO_2$ on anodic porous alumina. The results revealed that anodic porous alumina is effective as a substrate for photocatalytic film and that high-activity $TiO_2$ film can be prepared at low cost.

Material Properties of Ni-P-B Electrodeposits for Steam Generator Tube Repair

  • Kim, Dong Jin;Seo, Moo Hong;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • 제3권3호
    • /
    • pp.112-117
    • /
    • 2004
  • This work investigated the material properties of Ni-P-B alloy electrodeposits obtained from a Ni sulfamate bath as a function of the contents of the P and B sources($H_3PO_3$ and dimethyl amine borane complex(DMAB), respectively) with/without additives. Chemical composition, residual stress, microstructure and micro hardness were investigated using ICP(inductively coupled plasma) mass spectrometer, flexible strip, XRD, TEM and micro Vickers hardness tester, respectively. From the results of the compositional analysis, it was observed that P and B are incorporated competitively during the electrodeposition and the sulfur from the additive is codeposited into the electrodeposit. The measured residual stress value increased in the order of Ni, Ni-P, Ni-B and Ni-P-B electrodeposits indicating that boron affects the residual tensile stress greater than phosphorus. As the contents of the alloying element sources of P and B increased, crystallinity and the grain size of the electrodeposit decreased. The effect of boron on crystallinity and grain size was also relatively larger than the phosphorus. It can be explained that the boron with a smaller atomic radius contributes to the increase of residual stress in the tensile direction and the larger restraining force against the grain growth more significantly than the phosphorus with a larger atomic radius. Introduction of an additive into the bath retarded crystallization and grain growth, which may be attributed to the change of the grain growth kinetics induced by the additive adsorbed on the substrate and electrodeposit surfaces during electrodeposition.

스크린 인쇄법 및 열전사법에 의한 VPT 형광막의 형성연구 (A Study on VPT phosphor screen formed by screen printing and thermal transfer method)

  • 조미정;남수용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.593-594
    • /
    • 2006
  • A novel thermal transfer method was developed to form the phosphor screen for VPT(Video Phone Tube). This method have advantages of simple process, clean environment, saving raw material and running-cost comparison of electrodeposition, spin coating of conventional methods. But now applying phosphor screen for thermal transfer method has been formed three layers (phosphor layer, ITO layer and thermal adhesive layer) on the PET film as substrate. This is complex process, run to waste of raw-material and require of high cost. Also ITO paste at present has been imported from Japan. To improve these problems, we have manufactured phosphor screen formed by two layers (phosphor layer and ITO layer). We have developed ITO paste that had both conductive and excellent thermal transfer abilities, made it of domestic raw-material.

  • PDF