• Title/Summary/Keyword: complex conjugation

Search Result 36, Processing Time 0.02 seconds

나선 주사 영상 궤적을 위한 경사자계 구현의 초기값 결정에 따른 영상 개선

  • 김휴정;김인기;장경섭;이정선;이흥규;안창범
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.125-125
    • /
    • 2002
  • 목적: 나선 주사 영상의 경우 영상의 대조도와 질을 결정하는 k-space의 DC영역부터 데이터를 얻기 때문에 경사자계를 구현하는데 있어서 초기값이 중요한 역할을 한다. 또한, 영상의 재구성과정에서 데이터의 complex conjugation 특성을 이용하기 때문에 각 데이터의 대칭성도 중요하다. 본 연구의 목적은 나선주사 영상의 경사자계를 수학적인 방법과 수치 해석적인 방법을 이용하여 구현함으로써 초기 경사자계 인가의 문제점을 보완하여 영상의 질을 개선하는데 있다.

  • PDF

Optical Properties of Admolecules near a Phase -Conjugate Mirror (위상 공액 거울에 흡착된 분자의 광학적 성질)

  • 김영식
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 1996
  • The induced linewidth, frequency shift and absorption spectrum for a molecular dipole in the vicinity of a phase -conjugate mirror have been investgated within a classical phenomenological model, with particularreference to the technique of optical phase conjugation by a surface. While the shifts and the widths show similar characteristics as those obtained recently by Bochove who considered the problem within the context of four-wave mixing, the results obtained in the present model can be defined uniquely with the possibility of an infinite lifetime for the excited admolecule . Furthermore, the absorption lineshape obtained here some interesting features which depend on both the magnitude and the phase of the complex reflectivity of the mirror.

  • PDF

Synthesis and Light-Emitting Properties of Zinc Chelate Compounds (아연 킬레이트 화합물의 합성 및 전계발광 특성)

  • Kim, Hong-Soo;Nam, Ki-Dae;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.292-297
    • /
    • 2001
  • Zinc complexes with Bis[2-(o-hydroxyphenyl) benzothiazolato ligands (ZnPBS-0) and Bis[2- (o-hydroxynaphthyl) benzothiazolato ligands (ZnPBS-05) were synthesized, and luminescent properties of these materials were investigated. The emission band found that it strongly depends on the molecular structure of introduced ligand and was tuned from 525 nm to 535 nm by changing the ligand structures. Spreading of the ${\pi}-conjugation$ in 2-(o-hydroxyphenyl) group gives rise to a blue shift. On the other hand, spreading of the ${\pi}-conjugation$ in benzothiazole groups leads to a red shift. The EL properties also showed good consistency with their differences of ligand structure. Bright-blue EL emission with a maximum luminance of 8300 $cd/m^{2}$ at 11V was obtained from the organic light - emitting diodes (OLEDs) using ZnPBS-0 as emitting layer. It was also found that the newly synthesized materials were suitable to be used as emitting materials in organic EL device.

Future Cancer Therapy with Molecularly Targeted Therapeutics: Challenges and Strategies

  • Kim, Mi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.371-389
    • /
    • 2011
  • A new strategy for cancer therapy has emerged during the past decade based on molecular targets that are less likely to be essential in all cells in the body, therefore confer a wider therapeutic window than traditional cytotoxic drugs which mechanism of action is to inhibit essential cellular functions. Exceptional heterogeneity and adaptability of cancer impose significant challenges in oncology drug discovery, and the concept of complex tumor biology has led the framework of developing many anticancer therapeutics. Protein kinases are the most pursued targets in oncology drug discovery. To date, 12 small molecule kinase inhibitors have been approved by US Food and Drug Administration, and many more are in clinical development. With demonstrated clinical efficacy of bortezomib, ubiquitin proteasome and ubiquitin-like protein conjugation systems are also emerging as new therapeutic targets in cancer therapy. In this review, strategies of targeted cancer therapies with inhibitors of kinases and proteasome systems are discussed. Combinational cancer therapy to overcome drug resistance and to achieve greater treatment benefit through the additive or synergistic effects of each individual agent is also discussed. Finally, the opportunities in the future cancer therapy with molecularly targeted anticancer therapeutics are addressed.

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • Ha, Jeong Hyeon;Jeong, Guk Yeong;Kim, Min Seon;Lee, Yang Hun;Sin, Gu;Kim, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

Market Trend and Current Status of the Research and Development of Antibody-Drug Conjugates

  • Kwon, Sun-Il
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.121-133
    • /
    • 2021
  • Antibody-drug conjugates (ADCs) are drawing much interest due to its great potential to be one of the important options in cancer treatments. ADCs are acting like a magic bullet which delivers cytotoxic drugs specifically to cancerous cells throughout the body, thus attacks these cells, while not harming healthy cells. ADCs are complex molecules that are composed of an antibody having targeting capability and linked-payload or cytotoxic drug killing cancerous cells. The key factors of the success in the development of ADC are selection of appropriate antibody, cytotoxic payload and linker for conjugation. Recently there was considerable progress in ADCs development, and a large number of ADCs gained US FDA approval. About 80 new ADCs are under active clinical studies. In this review we present a brief introduction of the US-FDA approved ADCs and global situation in the clinical studies of ADC pipelines. We address an overview on each component of an ADC design such as target antigens, payloads, linkers, conjugation methods, drug antibody ratio. In addition, we discuss on the trend of ADC market where global big pharmas and domestic biopharmaceutical companies are competing to develop safer and more effective ADCs.

Comparison of Cu(II)-DIPS and Human Recombinant Superoxide Dismutase, an Antioxidant (항산화제인 Cu(II)-DIPS와 재조합 인간 수퍼옥사이드 디스뮤타제의 비교)

  • Yong, Chul-Soon;Nam, Doo-Hyun;Huh, Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.145-152
    • /
    • 1995
  • The superoxide dismutase (SOD) mimetic activity of copper complex of 3,5-disopropylsalicylic acid (Cu(II)-DIPS) was tested and compared to those of human recombinant SOD (hrSOD) and its conjugate form with polyethyleneglycol (PEG) using fer- ricytochrome c reduction assay. Stability constant of Cu(II)-DIPS was measured po- tentiometrically using SCOGS2 program. In the presence of 10 g/L albumin, Cu(II)-DIPS lost most of its SOD mimetic activity. HrSOD was modified with polyethylene glycol (PEG) of M.W. 5000. These conjugates have markedly prolonged plasma half-lives of enzymatic activity (15.5 hr) compared to native hrSOD (5 min). In summary, efficient SOD mimetics should be stable enough not to dissociate in blood by serum protein. HrSOD could have longer half-life by conjugation with inert PEG for sustained SOD effect.

  • PDF

Simple Electrochemical Immunosensor for the Detection of Hippuric Acid on the Screen-printed Carbon Electrode Modified Gold Nanoparticles

  • Choi, Young-Bong;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • This paper describes an electrochemical immunosensor for simple, fast and quantitative detection of a urinary hippuric acid which is one of major biological indicator in toluene-exposed humans. The feature of this electrochemical system for immunoassay of hippuric acid is based on the direct conjugation of ferrocene to a hippuric acid. With the competition between the ferrocene-hippuric acid complex and hippuric acid for binding to the anti-hippuric acid monoclonal antibody coated onto gold nanoparticles, the electrical signals are turned out to be proportional to urinary hippuric acid in the range of 0.01-10 mg/mL, which is enough to be used for the point-of-care. The proposed electrochemical method could extend its applications to detect a wide range of different small molecules of antigens in the health care area.

Absorption and Fluorescence Studies of 3-Ethenylindoles

  • Singh, Anil K.;Hota, Prasanta K.
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.107-113
    • /
    • 2004
  • Synthesis, absorption and fluorescence properties of 3-methyl indole (1), N-(benzenesulfonyl)-3-(3-oxo-but-1-enyl)-indole (2) and 1H-3-(3-oxo-but-1-enyl)-indole (3) are described. Extended conjugation at C-3 of indole as in 3 causes moderate resolution of $^1L_a$ and $^1L_b$ bands. However, 2 having an electron-withdrawing group at indolic nitrogen shows only the $^1L_a$ band. While the $^1L_b$ band largely remains solvent polarity independent, the $^1L_a$ band undergoes moderate red shift in polar solvents. The fluorescence in 2 and 3 originates from the $L_b$ transition. Additionally, interaction of 2 and 3 with BSA indicates that these compounds bind to the hydrophobic site of BSA with the formation of a highly fluorescent BSA-probe complex.

  • PDF

Interferon-Stimulated Gene 15 in the Control of Cellular Responses to Genotoxic Stress

  • Jeon, Young Joo;Park, Jong Ho;Chung, Chin Ha
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.83-89
    • /
    • 2017
  • Error-free replication and repair of DNA are pivotal to organisms for faithful transmission of their genetic information. Cells orchestrate complex signaling networks that sense and resolve DNA damage. Post-translational protein modifications by ubiquitin and ubiquitin-like proteins, including SUMO and NEDD8, are critically involved in DNA damage response (DDR) and DNA damage tolerance (DDT). The expression of interferon-stimulated gene 15 (ISG15), the first identified ubiquitin-like protein, has recently been shown to be induced under various DNA damage conditions, such as exposure to UV, camptothecin, and doxorubicin. Here we overview the recent findings on the role of ISG15 and its conjugation to target proteins (e.g., p53,$ {\Delta}Np63{\alpha}$, and PCNA) in the control of cellular responses to genotoxic stress, such as the inhibition of cell growth and tumorigenesis.