• Title/Summary/Keyword: complete mitogenome

Search Result 23, Processing Time 0.019 seconds

Characterization of six new complete mitochondrial genomes of Chiasmodontidae (Scombriformes, Percomorpha) and considerations about the phylogenetic relationships of the family

  • Igor Henrique Rodrigues-Oliveira;Rubens Pasa;Fabiano Bezerra Menegidio;Karine Frehner Kavalco
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.10.1-10.6
    • /
    • 2023
  • The fishes of the Chiasmodontidae family, known as swallower fishes, are species adapted to live in deep seas. Several studies have shown the proximity of this family to Tetragonuridae and Amarsipidae. However, the phylogenetic position of this clade related to other Pelagiaria groups remains uncertain even when phylogenomic studies are employed. Since the low number of published mitogenomes, our study aimed to assemble six new mitochondrial genomes of Chiasmodontidae from database libraries to expand the discussion regarding the phylogeny of this group within Scombriformes. As expected, the composition and organization of mitogenomes were stable among the analyzed species, although we detected repetitive sequences in the D-loop of species of the genus Kali not seen in Chiasmodon, Dysalotus, and Pseudoscopelus. Our phylogeny incorporating 51 mitogenomes from several families of Scombriformes, including nine chiasmodontids, recovered interfamilial relationships well established in previous studies, including a clade containing Chiasmodontidae, Amarsipidae, and Tetragonuridae. However, phylogenetic relationships between larger clades remain unclear, with disagreements between different phylogenomic studies. We argue that such inconsistencies are not only due to biases and limitations in the data but mainly to complex biological events in the adaptive irradiation of Scombriformes after the Cretaceous-Paleogene extinction event.

Complete mitochondrial genome of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae), from Jeju Island, Korea

  • Kim, Kee-Young;Park, Jeong Sun;Lee, Keon Hee;Kim, Min Jee;Kim, Seong-Wan;Park, Jong-Woo;Kang, Sang-Kuk;Kim, Nam-Suk;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.44 no.2
    • /
    • pp.65-71
    • /
    • 2022
  • The wild silkmoth Antheraea yamamai Guérin-Méneville, 1861 (Lepidoptera: Saturniidae) is an important producer of silk that is superior to the silk produced by traditional domesticated silkworm. In this study, we sequenced the complete mitochondrial genome (mitogenome) of An. yamamai collected from Jeju Island, which is the southernmost island approximately 100 km offshore southward from the Korean Peninsula. Determining this sequence will be necessary for tracing the biogeographic history of the species and developing molecular markers for identifying the origin of commercial products. Comparison of the sequence divergence among two available and the current mitogenomes revealed a low but substantial number of substitutions, totaling 23 nucleotides in the whole genome. CytB and ND5 showed the highest variability with five and four variations, respectively, suggesting that these regions will be prior regions to target for subsequent biogeographic and diagnosis study. Phylogenetic reconstruction based on all available sequences of Saturniidae showed that An. yamamai is a sister to the congeneric species An. pernyi, corroborating that Antheraea is a highly supported monophyletic group. The tribe Saturniini was clearly non-monophyletic and interrupted by Attacini and Bunaeini.

Complete Mitochondrial Genome of the Chagas Disease Vector, Triatoma rubrofasciata

  • Dong, Li;Ma, Xiaoling;Wang, Mengfei;Zhu, Dan;Feng, Yuebiao;Zhang, Yi;Wang, Jingwen
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.5
    • /
    • pp.515-519
    • /
    • 2018
  • Triatoma rubrofasciata is a wide-spread vector of Chagas disease in Americas. In this study, we completed the mitochondrial genome sequencing of T. rubrofasciata. The total length of T. rubrofasciata mitochondrial genome was 17,150 bp with the base composition of 40.4% A, 11.6% G, 29.4% T and 18.6% C. It included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and one control region. We constructed a phylogenetic tree on the 13 protein-coding genes of T. rubrofasciata and other 13 closely related species to show their phylogenic relationship. The determination of T. rubrofasciata mitogenome would play an important role in understanding the genetic diversity and evolution of triatomine bugs.