Complete mitochondrial genome of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae), from Jeju Island, Korea

Kee-Young Kim¹, Jeong Sun Park², Keon Hee Lee², Min Jee Kim³, Seong-Wan Kim¹, Jong-Woo Park¹, Sang-Kuk Kang¹, Nam-Suk Kim¹, and Iksoo Kim^{2,*}

¹Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea

²Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea ³Honam Regional Office, Animal and Plant Quarantine Agency, Gunsan 54096, Republic of Korea

Abstract

The wild silkmoth *Antheraea yamamai* Guérin-Méneville, 1861 (Lepidoptera: Saturniidae) is an important producer of silk that is superior to the silk produced by traditional domesticated silkworm. In this study, we sequenced the complete mitochondrial genome (mitogenome) of *An. yamamai* collected from Jeju Island, which is the southernmost island approximately 100 km offshore southward from the Korean Peninsula. Determining this sequence will be necessary for tracing the biogeographic history of the species and developing molecular markers for identifying the origin of commercial products. Comparison of the sequence divergence among two available and the current mitogenomes revealed a low but substantial number of substitutions, totaling 23 nucleotides in the whole genome. *CytB* and *ND5* showed the highest variability with five and four variations, respectively, suggesting that these regions will be prior regions to target for subsequent biogeographic and diagnosis study. Phylogenetic reconstruction based on all available sequences of Saturniidae showed that *An. yamamai* is a sister to the congeneric species *An. pernyi*, corroborating that *Antheraea* is a highly supported monophyletic group. The tribe Saturniini was clearly non-monophyletic and interrupted by Attacini and Bunaeini.

© 2022 The Korean Society of Sericultural Sciences Int. J. Indust. Entomol. 44(2), 65-71 (2022)

Received : 31 May 2022 Accepted : 26 Jun 2022

Keywords:

Antheraea yamamai, Mitochondrial genome, Saturniidae

Introduction

The wild silkmoth *Antheraea yamamai* Guérin-Méneville, 1861 is a large silkmoth endemic to east Asia including Korea (Park *et al.*, 1999). Adults eclose once a year, from the middle of July to the middle of September, in Korea. The larvae feed on the leaves of the sawtooth oak (*Quercus acutissima*), chestnut (*Castanea crenata*), jolcham oak (*Quercus serrata*), etc. Compared to the silk yarn of the domestic silkworm *Bombyx mori*, that of *An. yamamai* shows superior gloss, durability, and wrinkle and, thus, was imported to Europe (Park *et al.*, 1999; Yoon *et al.*, 2006).

Because of its commercial value, the genetic diversity and population genetic structure of *An. yamamai* was determined in a previous study (Kim *et al.*, 2017). Evaluation of two partial mitochondrial genes (COI and ND4) provided a maximum

*Corresponding author.

Iksoo Kim Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea Tel: +82-62-530-5117 / FAX: +82-62-530-2069 E-mail: ikkim81@chonnam.ac.kr

© 2022 The Korean Society of Sericultural Sciences

sequence divergence of only 0.46% (3 bp) and 0.32% (2 bp), respectively, from 79 individuals collected from 12 locations in Korea (Kim et al., 2017). Thus, analysis of the full mitochondrial genomes (mitogenomes) from geographic samples to detect further variable regions is required, in that such variable regions selected from full mitogenome sequences provide further scrutinized inference on population history (Jeong et al., 2021; Lee et al., 2021; Kim et al., 2022). Currently, two mitogenome sequences each from northern regions of South Korea and China are available (Kim et al., 2009; Sun et al., 2021). In this study, we sequenced the complete mitogenome of a sample collected from a remote island, which is ~430 km distant from previous sampling site in South Korea. Our and previous data collectively will be useful for tracing the biogeographic history of the species after more sequence information is accumulated. Furthermore, such variance information can be used to develop molecular markers to trace the origin of commercial products made from An. vamamai.

Materials and Methods

Sampling and sequencing

In 2021, *An. yamamai* eggs were collected from mulberry leaves on Jeju Island, which is a remote subtropical island approximately 100 km offshore and southward from the Korean Peninsula (33°25′58.0″ N, 126°38′25.6″ E). DNA was extracted from one egg using a commercial kit (Qiagen, Hilden, Germany), from which three long overlapping fragments (*COI-ND4*, *ND5-IrRNA*, and *IrRNA-COI*) were amplified (Kim *et al.*, 2012). The PCR products were purified with a PCR purification Kit (Bioneer, Daejeon, Korea). These long fragments were sequenced using barcode-tagged sequencing technology (Celemics, Inc., Seoul, Korea) and the Illumina MiSeq platform (Illumina, San Diego, CA, USA). The remaining DNA was deposited as a voucher specimen at the Chonnam National University, Gwangju, Korea, under accession no. CNU7299.

Genome construction and phylogenetic analysis

The genome was constructed using MITObim ver. 1.9 (Hahn *et al.*,) through de novo assembly with one conspecies (Kim *et al.*, 2009). Phylogenetic analysis was performed using 13 protein-coding genes (PCGs) and 2 rRNA genes (13,305 bp, including gaps) from all available mitogenome sequences in the

family Saturniidae. The Bayesian inference method, which is implemented in CIPRES Portal v. 3.1 (Miller et al., 2010) was used for phylogenetic analysis. For the analysis, two independent runs of four incrementally heated Markov and Monte Carlo chains (one cold chain and three hot chains) were simultaneously run for one million generations, with tree sampling conducted every 1000 generations. The first 25% of the sampled trees was discarded as burn-in with 48 hrs of maximum running time. The average of the split frequencies under 0.01 was the criterion to decide the reach of convergence from two simultaneous runs. Confidence values were obtained from the Bayesian posterior probabilities (BPPs). Substitution model selection, which was conducted by the comparison of AIC scores (Akaike, 1974) using Modeltest ver. 3.7 (Posada and Crandall, 1998) provided the GTR substitution model with Gamma-distributed rate heterogeneity (G) and invariable sites (I) (GTR + G + I) and was applied to BI analyses.

Results and Discussion

Genome summary

The complete 15,340-base pair (bp) mitogenome of An. yamamai is composed of typical gene sets (two rRNAs, 22 tRNAs, and 13 PCGs) and a major non-coding A+T-rich region (Table 1; GenBank acc. no. OM214002). The gene arrangement of the An. yamamai mitogenome is identical to that of most lepidopteran genomes including geographic samples of A. yamamai mitogenomes (Kim et al. 2009; Sun et al. 2021). The size of the genome is highly similar to two other geographic samples of An. vamamai (15,341 bp from China by Sun et al., 2021; and 15,338 bp from Korean peninsula by Kim et al., 2009) and is well within the range found in Saturniidae, which ranges from 15,236 (Actias selene; Liu et al., 2012) to 15,573 (An. pernyi Qinghuang1; Li et al., 2021; Table 2). Twelve of 13 PCGs had the typical ATN start codon, whereas COI had an atypical CGA codon frequently found in the start region of the lepidopteran COI (Kim et al., 2012). The stop codons were incomplete in COII, COIII, ND5, and ND4, being present only as a single thymine, whereas the remaining ones were complete as TAA (Table 1). The length of A+T-rich region of A. yamamai is 334 bp and is identical to two other A. yamamai mitogenomes. Within the region no detectable repeat unit was found. The A/ T content of the whole mitogenome was 80.31%; however, it

Table 1. Summar	y of Antheraea	yamamai mitochondria	l genome.
-----------------	----------------	----------------------	-----------

Gene	Direction	Nucleotidenumber	Size	Size Anticodon		Stop codon
trnM	F	1-67	67	CAT 32-34		
trnl	F	77-140	64	GAT 106-108		
trnQ	R	138-206	69	TTG 174-176		
ND2	F	260-1273	1014		ATT	TAA
trnW	F	1282-1349	68	TCA1313-1315		
trnC	R	1342-1404	63	GCA 1373-1375		
trnY	R	1415-1481	67	GTA 1446-1448		
COI	F	1488-3018	1531		CGA	T-tRNA
trnL ₂	F	3019-3085	67	TAA 3049-3051		
COII	F	3086-3767	682		ATG	T-tRNA
trnK	F	3768-3838	71	CTT 3798-3800		
trnD	F	3855-3923	69	GTC 3886-3888		
ATP8	F	3924-4091	168		ATT	TAA
ATP6	F	4085-4762	678		ATG	TAA
COIII	F	4762-5550	789		ATG	TAA
trnG	F	5553-5619	67	TCC 5583-5585		
ND3	F	5617-5971	355		ATA	T-tRNA
trnA	F	5973-6036	64	TGC 6002-6004		
tmR	F	6037-6101	65	TCG 6063-6065		
trnN	F	6102-6166	65	GTT 6132-6134		
trnS1	F	6169-6234	66	GCT 6194-6196		
trnE	F	6236-6301	66	TTC 6265-6267		
trnF	R	6308-6376	69	GAA 6340-6342		
ND5	R	6377-8117	1741		ATT	T-tRNA
trnH	R	8118-8183	66	GTG 8151-8153		
ND4	R	8196-9536	1341		ATG	TAG
ND4L	R	9541-9831	291		ATG	TAA
trnT	F	9837-9901	65	TGT 9867-9869		
trnP	R	9902-9966	65	TGG 9934-9936		
ND6	F	9969-10505	537		ATA	TAA
CytB	F	10505-11659	1155		ATA	TAA
trnS ₂	F	11685-11751	67	TGA 11713-11715		
ND1	R	11772-12710	939		ATG	TAA
trnL1	R	12712-12782	71	TAG 12750-12752		
IrRNA	R	12783-14162	1380			
trnV	R	14163-14230	68	TAC 14198-14200		
srRNA	R	14231-15006	776			
A+T-rich region		15007-15340	334			

Note: The abbreviations for the genes are as follows: *COI*, *COII* and *COIII* refer to the cytochrome oxidase subunits, *CytB* refers to cytochrome b, and *ND1-6* refers to NADH dehydrogenase components. *srRNA* and *lrRNA* denote small and large subunit ribosomal RNA (rRNA) genes. tRNAs are denoted as one-letter symbols in accordance with the IUPAC-IUB single-letter amino acid codes except those encoding leucine and serine, which are labeled L_1 for CTN codon family, L_2 for TTR codon family, *S*¹ for AGN codon family, and *S*² for TCN codon family.

Table 2. Characteristics of Saturniidae mitochondrial genomes.

Taxon/Strain	Size (bp)	A/T content - (%)	PCG		srRNA		IrRNA		tRNA		A+T-rich region		GenBank
			No. codons ^ª	AT (%)	Size (bp)	AT (%)	Size (bp)	AT (%)	Size (bp)	AT (%)	Size (bp)	AT (%)	accession no.
Saturniidae													
Saturniini													
Actias selene	15,236	78.91	3,728	77.30	762	83.99	1,364	83.58	1,459	80.60	339	87.91	JX186589
Actias artemis aliena	15,243	78.62	3,729	76.85	777	84.30	1,363	83.13	1,462	80.78	328	91.77	KF927042
Actias dubernardi	15,270	78.24	3,726	76.36	779	84.08	1,371	83.30	1,472	80.71	330	90.00	MW133617
Actias luna	15,259	78.73	3,729	76.99	758	83.91	1,360	83.75	1,463	80.59	345	89.57	MN832537
Antheraea yamamai	15,338	80.29	3,729	78.89	776	84.41	1,380	83.99	1,473	81.33	334	89.52	EU726630
Antheraea yamamai	15,341	80.30	3,727	78.87	786	84.35	1,382	84.08	1,473	81.33	334	89.52	MW009051
Antheraea yamamai	15,340	80.31	3,730	78.90	776	84.41	1,380	84.13	1,469	81.28	334	89.52	This study
Antheraea frithi	15,338	80.19	3,725	78.65	778	84.58	1,380	83.99	1,476	81.78	333	89.19	KJ740437
Antheraea pernyi	15,566	80.16	3,727	78.46	775	84.13	1,369	83.86	1,472	81.39	552	90.40	AY242996
Antheraea pernyi	15,537	80.10	3,727	78.41	775	83.87	1,370	83.87	1,487	81.64	516	90.89	HQ264055
Antheraea pernyi_Yu6	15,569	80.28	3,727	78.58	775	84.26	1,369	84.00	1,472	81.45	552	90.94	KP762788
Antheraea pernyi_Yu7	15,572	80.11	3,727	78.41	775	84.00	1,369	83.78	1,472	81.52	554	89.89	KP999979
Antheraea pernyi_731	15,570	80.19	3,727	78.53	775	83.87	1,369	83.86	1,472	81.45	553	90.24	KP881616
Antheraea pernyi_Luhong	15,563	80.21	3,727	7854	775	84.13	1,368	83.70	1,468	81.34	552	90.58	MW364566
Antheraea pernyi_Qing6	15,572	80.22	3,727	78.53	775	84.13	1,368	83.70	1,475	81.49	552	90.76	MT890592
Antheraea pernyi_Qinghuang1	15,573	80.22	3,727	78.54	775	84.13	1,369	83.64	1,471	81.44	552	90.58	MN064713
Antheraea pernyi_Dingzhou1	15,573	80.21	3,727	78.52	775	84.13	1,368	83.70	1,475	81.49	553	90.60	MW940851
Antheraea assama	15,312	80.18	3,726	78.74	779	84.72	1,371	84.17	1,466	80.56	332	90.66	KU301792
Antheraea assama	15,272	80.19	3,725	78.76	779	84.72	1,344	84.00	1,465	80.75	328	91.16	KU379695
Eriogyna pyretorum	15,327	80.82	3,731	79.35	778	84.45	1,338	84.60	1,477	81.86	358	92.18	FJ685653
Neoris haraldi	15,383	79.51	3,725	77.95	776	79.38	1,363	85.25	1,473	80.86	417	90.89	MF664471
Cricula trifenestrata	15.425	77.68	3,728	75.54	777	83.53	1,384	83.60	1,453	80.45	447	89.71	KY644697
Rhodinia fugax	15,334	80.57	3,731	79.14	772	83.94	1,371	84.46	1,480	81.55	370	91.62	MT548575
Saturnia jonasii	15,261	79.48	3,727	77.87	764	84.29	1,366	83.89	1,468	81.20	339	90.27	MF346379
Saturnia boisduvalii	15,257	79.32	3,726	77.57	772	84.33	1,363	84.15	1,470	81.36	332	90.66	MF034742
Saturnia japonica	15,376	80.67	3,727	79.12	772	84.33	1,407	84.93	1,478	81.80	332	91.87	MT614593
Saturnia japonica	15,368	80.71	3,727	79.16	772	84.33	1,400	84.86	1,477	81.86	331	92.45	MW405443
Saturnia japonica	15,360	80.62	3,733	79.11	774	84.11	1,391	84.76	1,478	81.87	330	91.52	EF622227
Attacini													
Samia cynthia ricini	15,384	79.78	3,732	78.26	779	83.83	1,358	84.02	1,463	80.59	361	90.86	JN215366
Samia cynthia cynthia	15,345	79.86	3,726	78.33	778	84.19	1,359	84.18	1,465	80.75	359	91.09	KC812618
Samia canningi	15,384	79.88	3,731	78.38	779	83.95	1,358	84.02	1,465	80.48	361	91.14	KJ159909
Attacus atlas	15,282	79.30	3,727	77.68	777	83.14	1,368	84.80	1,436	81.20	357	90.48	KF006326
Bunaeini													
Gonimbrasia belina	15,295	80.57	3,728	78.89	773	85.25	1,371	84.83	1,472	82.81	357	91.04	MN832539
Gonimbrasia belina	15,308	80.60	3,728	79.03	774	84.88	1,366	84.41	1,471	82.80	355	88.73	MN832538
Gynanisa maja	15,275	80.73	3,726	79.24	759	84.85	1,365	84.76	1,458	82.72	350	87.71	MN832540
Gynanisa maja	15,287	80.92	3,725	79.27	761	85.55	1,359	85.36	1,458	82.51	358	91.90	MN832541

^aTermination codons were excluded in total codon count.

Fig. 1. Sequencing alignment of three mitochondrial genome sequences of *Antheraea yamamai* collected in Jeju, Suwon, and Shuguang, China, respectively. Only nucleotide positions that differ to each other are indicated. The letters on the sequences indicate amino acid. The numbers correspond to the positions, where sequence variation is detected, with respect to the mitochondrial genome of Jeju individual.

varied among the genes as follows: A+T-rich region, 89.52%; lrRNA, 84.18%; srRNA, 81.41%; tRNAs, 81.28%; PCGs, 78.90% (Table 2).

Variability among An. yamamai sequences

Comparison of DNA barcoding region among *A. yamamai* individuals showed a maximum of only 0.13% (two bp) of sequence divergence, suggest that the geographic samples of *A. yamamai* are very closer genetically. However, comparison of whole genome sequences provided a substantial number of substitutions, with 23 nucleotides, mainly in PCGs (Fig. 1). CytB

and ND5 showed the highest variability, with each containing five and four variations, respectively, whereas other PCGs showed less and other genic region provided no variation. Thus, these two PCGs should be further evaluated in biogeographic and diagnosis studies.

Phylogenetic analysis

Phylogenetic analysis indicated a very close group among geographic samples of *An. yamamai*, a sister relationship between *An. pernyi* and *An. yamamai*, and *Antheraea* as a monophyletic group with the highest nodal supports (Bayesian

Fig. 2. Phylogenetic tree obtained using the Bayesian inference method. The numbers at each node specify Bayesian posterior probabilities. The species Bombycidae and Sphingidae were used as outgroups. GenBank accession number of each species is shown in brackets after the scientific names.

posterior probabilities = 1; Fig. 1). Consistent to previous studies *Neoris haraldi* was placed as the most basal lineage of Saturniidae (He *et al.*, 2017; Chen *et al.*, 2021). The tribe Saturniini was clearly found to be a non-monophyletic group, interrupted by Attacini and Bunaeini, as detected previously using mitogenome sequences (Langley *et al.*, 2020; Chen *et al.*, 2021). However, our result did not place Bunaeini, which includes the African Saturniidae, as the most basal lineage, which is not consistent with the results of previous studies (Langley *et al.*, 2020; Chen *et al.*, 2020; Chen *et al.*, 2021). As more mitogenome sequences are available further scrutinized analysis, which will provide further robust phylogenetic inference might be feasible.

Funding

This work was supported by the "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ010018)" Rural Development Administration, Republic of Korea.

Data availability statement

The genome sequence data supporting the findings of this study are openly available in GenBank of NCBI at https://www. ncbi.nlm.nih.gov under accession no. OM214002. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA799902, SRP356406, and SAMN25211519, respectively.

References

- Akaike, H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19, 716-723.
- Chen D-B, Zhang R-S, Jin X-D, Yang J, Li P, Liu Y-Q (2021) First complete mitochondrial genome of *Rhodinia* species (Lepidoptera: Saturniidae): genome description and phylogenetic implication. Bull Entomol Res 2, 243-252.
- Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads— A baiting and iterative mapping approach. Nucl Acids Res 41, e129.

- He YY, Wang X, Chen LS (2017) The complete mitochondrial genome of Neoris haraldi Schawerda (Lepidoptera: Saturniidae). Mitochondrial DNA Part B Resour 2, 625-626.
- Jeong JS, Kim MJ, Park JS, Lee KH, Jo YH, Takahashi J et al. (2021) Tracing the invasion characteristics of the yellow-legged hornet, *Vespa velutina nigrithorax* (Hymenoptera: Vespidae), in Korea using newly detected variable mitochondrial DNA sequences. J Asia-Pac Entomol 24, 135-147.
- Kim SR, Kim MI, Hong MY, Kim KY, Kang PD, Hwang JS et al. (2009) The complete mitogenome sequence of the Japanese oak silkmoth, *Antheraea yamamai* (Lepidoptera: Saturniidae). Mol Biol Rep 36, 1871-1880.
- Kim SR, Kim KY, Jeong JS, Kim MJ, Kim KH, Choi GH et al. (2017) Population genetic characterization of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae), using novel microsatellite markers and mitochondrial DNA gene sequences. Genet Mol Res16, gmr1602908.
- Kim JS, Park JS, Kim MJ, Kang PD, Kim SG, Jin BR *et al.* (2012) Complete nucleotide sequence and organization of the mitochondrial genome of eri-silkworm, *Samia cynthia ricini* (Lepidoptera: Saturniidae). J Asia Pac Entomol 15, 162-173.
- Kim MJ, Park JS, Kim H, Kim S-R, Kim S-W, Kim K-Y *et al.* (2022) Phylogeographic relationships among *Bombyx mandarina* (Lepidoptera: Bombycidae) populations and their relationships to *B. mori* inferred from mitochondrial genomes. Biology 11, 68.
- Langley J, Van der Westhuizen S, Morland G, van Asch B (2020) Mitochondrial genomes and polymorphic regions of *Gonimbrasia belina* and *Gynanisa maja* (Lepidoptera: Saturniidae), two important edible caterpillars of Southern Africa. Int J Biol Macromol 144, 632-642.
- Lee KH, Jeong JS, Park JS, Kim MJ, Jeong NR, Jeong SY *et al.* (2021) Tracing the invasion and expansion characteristics of the flatid planthopper, *Metcalfa pruinosa* (Hemiptera: Flatidae), in Korea using mitochondrial DNA sequences. Insects 12, 4.
- Li XY, Liu YC, Zhang RS, Chen DB, Chen MM, Li YP *et al.* (2021) The mitochondrial genome of Qinghuang_1, the first modern improved strain of Chinese oak silkworm, *Antheraea pernyi* (Lepidoptera: Saturniidae). J Insects Food Feed 7, 233-243.
- Liu QN, Zhu BJ, Dai LS, Wei GQ, Liu CL (2012) The complete mitochondrial genome of the wild silkworm moth, *Actias selene*. Gene 505, 291-299.
- Miller, M.A., Pfeiffer, W., Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), IEEE, New

Orleans, pp. 1-8.

- Park KT, Kim SS, Tshistjakov YA, Kwon YD (1999) Insects of Korea series 4. Illustrated catalogue of moths in Korea (I) (Sphingidae, Bombicoidea, Notodontidae). Seoul, Korea: Jeonghaengsa; p 169-170.
- Posada D, Crandall KA (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14, 817-818.
- Sun S-W, Huang J-C, Liu Y-Q (2021) The complete mitochondrial genome of the wild silkmoth *Antheraea yamamai* from Heilongjiang, China (Lepidoptera: Saturniidae), Mitochondrial DNA Part B Resour 6, 2209-2211.
- Yoon HY, Kang PD, Kim SE, Lee SM (2006) Breeding of major characteristics of the wild silkmoth, *Antheraea yamamai* indoor and outdoor-reared. Korean J Sericult Sci 48, 61-67.