• Title/Summary/Keyword: complementary chromatic adaptation

Search Result 2, Processing Time 0.016 seconds

Geminocystis urbisnovae sp. nov. (Chroococcales, Cyanobacteria): polyphasic description complemented with a survey of the family Geminocystaceae

  • Elena Polyakova;Svetlana Averina;Alexander Pinevich
    • ALGAE
    • /
    • v.38 no.2
    • /
    • pp.93-110
    • /
    • 2023
  • Progress in phylogenomic analysis has led to a considerable re-evaluation of former cyanobacterial system, with many new taxa being established at different nomenclatural levels. The family Geminocystaceae is among cyanobacterial taxa recently described on the basis of polyphasic approach. Within this family, there are six genera: Geminocystis, Cyanobacterium, Geminobacterium, Annamia, Picocyanobacterium, and Microcrocis. The genus Geminocystis previously encompassed two species: G. herdmanii and G. papuanica. Herein, a new species G. urbisnovae was proposed under the provision of the International Code of Nomenclature for algae, fungi, and plants (ICN). Polyphasic analysis was performed for five strains from the CALU culture collection (St. Petersburg State University, Russian Federation), and they were assigned to the genus Geminocystis in accordance with high 16S rRNA gene similarity to existing species, as well as because of proximity to these species on the phylogenetic trees reconstructed with RaxML and Bayes methods. Plausibility of their assignment to a separate species of the genus Geminocystis was substantiated with smaller cell size; stenohaline freshwater ecotype; capability to complementary chromatic adaptation of second type (CA2); distinct 16S rRNA gene clustering; sequences and folding of D1-D1' and B box domains of the 16S-23S internal transcribed spacer region. The second objective pursued by this communication was to provide a survey of the family Geminocystaceae. The overall assessment was that, despite attention of many researchers, this cyanobacterial family has been understudied and, especially in the case of the crucially important genus Cyanobacterium, taxonomically problematic.

Effect of Light with Different Wavelengths on Nostoc flagelliforme Cells in Liquid Culture

  • Dai, Yu-Jie;Li, Jing;Wei, Shu-Mei;Chen, Nan;Xiao, Yu-Peng;Tan, Zhi-Lei;Jia, Shi-Ru;Yuan, Nan-Nan;Tan, Ning;Song, Yi-Jie
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.534-538
    • /
    • 2013
  • The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under $27{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light intensity and $25^{\circ}C$ on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.