DOI QR코드

DOI QR Code

Effect of Light with Different Wavelengths on Nostoc flagelliforme Cells in Liquid Culture

  • Dai, Yu-Jie (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Li, Jing (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Wei, Shu-Mei (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Chen, Nan (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Xiao, Yu-Peng (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Tan, Zhi-Lei (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Jia, Shi-Ru (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Yuan, Nan-Nan (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Tan, Ning (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Song, Yi-Jie (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology)
  • Received : 2012.05.17
  • Accepted : 2012.12.19
  • Published : 2013.04.28

Abstract

The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under $27{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light intensity and $25^{\circ}C$ on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.

Keywords

References

  1. Bennett, A. and L. Bogorad. 1973. Complementary chromatic adaptation in a filamentous blue green alga. J. Cell Biol. 58: 419-435. https://doi.org/10.1083/jcb.58.2.419
  2. Bezy, R. P., L. Wiltbanka, and D. M. Kehoea. 2011. Lightdependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria. Proc. Natl. Acad. Sci. USA 108: 18542-18547. https://doi.org/10.1073/pnas.1107427108
  3. Campbell, D. 1996. Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium. J. Calothrix Microbiol. 142: 1255-1263.
  4. Carmona, R., J. J. Vergara, M. Lahaye, and F. X. Niell. 1998. Light quality affects morphology and polysaccharide yield and composition of Gelidium sesquipedale (Rhodophyceae). J. Appl. Phycol. 10: 323-332. https://doi.org/10.1023/A:1008042904972
  5. Chen, X. F., S. R. Jia, S. J. Yue, N. Wang, C. T. Li, and Y. Wang. 2010. Effect of solid bed-materials on vegetative cells of Nostoc flagelliforme. J. Appl. Phycol. 22: 341-347. https://doi.org/10.1007/s10811-009-9464-3
  6. Dai, Z. J. 1992. Review of Nostoc flagelliforme research. J. Ningxia Univ. (Nat. Sci. Ed.). 13: 71-77.
  7. Dubois, M., K. A. Gilles, J. K. Hamilton, P. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. J. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  8. Gao, K. and A. Yu. 2000. Influence of $CO_2$, light and watering on growth of Nostoc flagelliforme mats. J. Appl. Phycol. 12: 185-189. https://doi.org/10.1023/A:1008123203409
  9. Gao, K. S., B. S. Qiu, J. R. Xia, and A. J. Yu. 1998. Light dependency of the photosynthetic recovery of Nostoc flagelliforme. J. Appl. Phycol. 10: 51-53. https://doi.org/10.1023/A:1008011531325
  10. Gao, K. S. 1998. Chinese studies on edible blue-green alga, Nostoc flagelliforme: A review. J. Appl. Phycol. 10: 37-49. https://doi.org/10.1023/A:1008014424247
  11. Hall, D. O. and K. K. Rao. 1994. Photosynthesis, pp. 43. 5th Ed. The Press Syndicate of Cambridge.
  12. Hu, M. R., Y. B. Zhao, Z. Z. Zhang, and P. Zhao. 1987. A preliminary study on natural soil environment for hair-algea growth and the artificial culture of hair-algae. J. Gansu Agric. Univ. 3: 76-81.
  13. Kanekiyo, K., J. B. Le, K. Hayashi, H. Takenaka, Y. Hayakawa, and S. Endo, T. Hayashi. 2005. Isolation of an antiviral polysaccharide, Nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J. Nat. Prod. 68: 1037-1041. https://doi.org/10.1021/np050056c
  14. Lemasson, C., N T. De. Marsac, and G. Cohen-Bazire. 1973. Role of allophycocyanin as a light-harvesting pigment in cyanobacteria. Proc. Nat. Acad. Sci. USA 70: 3130-3133. https://doi.org/10.1073/pnas.70.11.3130
  15. Liu, X. J. and F. Chen. 2003. Cell differentiation and colony alteration of an edible terrestrial cyanobacterium Nostoc flagelliforme, in liquid suspension cultures. J. Folia Microbiol. 48: 619-626. https://doi.org/10.1007/BF02993468
  16. Long, T. A. F. and P. M. Miller. 2008. The Effect of Light Wavelength on Mating, Copulation & Fitness in Drosophila Melanogaster by Anushka K. Chadha Enquiries. J. Interdisciplinary Studies for High School Students. 3: 1-8.
  17. Lüning, K. and M. Dring. 1975. Reproduction, growth and photosynthesis of gametophytes of Laminaria saccharina grown in blue and red light. J. Mar. Biol. 29: 195-200. https://doi.org/10.1007/BF00391846
  18. Mouget, J. L., P. Rosa, and G. Tremblin. 2004. Acclimation of Haslea ostrearia to light of different spectral qualities - confirmation of chromatic adaptation in diatoms. J. Photochem. Photobiol. B Biol. 75: 1-11. https://doi.org/10.1016/j.jphotobiol.2004.04.002
  19. Prezelin, B., H. Glover, B. Ver Hoven, D. Steinberg, H. Matlick, O. Schofield, et al. 1989. Blue-green light effects on lightlimited rates of photosynthesis: Relationship to pigmentation and productivity estimates for Synechococcus populations from the Sargasso Sea. J. Mar. Ecol. Progress Series 54: 121-136. https://doi.org/10.3354/meps054121
  20. Qiu, B., A. Zhang, and Z. Liu. 2003. Oxidative stress in Nostoc flagelliforme subjected to desiccation and effects of exogenous oxidants on its photosynthetic recovery. J. Appl. Phycol. 15: 445-450. https://doi.org/10.1023/B:JAPH.0000012099.14985.50
  21. Qiu, B. S. and K. S. Gao. 2002. Daily production and photosynthetic characteristics of Nostoc flagelliforme grown under ambient and elevated$CO_2$conditions. J. Appl. Phycol. 14: 77-83. https://doi.org/10.1023/A:1019434414245
  22. Raven, J. 1969. Action spectra for photosynthesis and lightstimulated ion transport processes in Hydrodictyon africanum. J. New Phytol. 68: 45-62. https://doi.org/10.1111/j.1469-8137.1969.tb06418.x
  23. Rukes, K. L. and T. J. Mulkey. 1994. Measurement of the effects of light quality and other factors on the rate of photosynthesis. J. Bioscene 20: 7-11.
  24. Schmidt-Goff, C. M. and N. A. Federspiel. 1993. In vivo and in vitro footprinting of a light-regulated promoter in the cyanobacterium Fremyella diplosiphon. J. Bacteriol. 175: 1806- 1813.
  25. Su, J., S. Jia, X. Chen, and H. Yu. 2008. Morphology, cell growth, and polysaccharide production of Nostoc flagelliforme in liquid suspension culture at different agitation rates. J. Appl. Phycol. 20: 213-217. https://doi.org/10.1007/s10811-007-9221-4
  26. Tandeau de Marsac N. 1977. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130: 82-91.
  27. Tao, Y. and S. M. Barnett. 2004. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. J. Biochem. Eng. 19: 251-258. https://doi.org/10.1016/j.bej.2004.02.004
  28. Wang, J., J. Su, Q. Xu, and Z. Hua. 1992. Biological characterization of Nostoc flagelliforme & way for its artificial cultivation. Part 1 Initial success in artificial cultivation in Laboratory. J. Ningxia Agric. College 13: 34-37.
  29. Ye, C. and K. Gao. 2004. Photosynthetic response to salt of aquatic-living colonies of the terrestrial cyanobacterium Nostoc flagelliforme. J. Appl. Phycol. 16: 477-481. https://doi.org/10.1007/s10811-004-5509-9
  30. Yu, H., S. Jia, and Y. Dai. 2009. Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J. Appl. Phycol. 21: 127-133. https://doi.org/10.1007/s10811-008-9341-5
  31. Zheng, J., M. J. Hu, and Y. P. Guo. 2008. Regulation of photosynthesis by light quality and its mechanism in plants. Chin. J. Appl. Ecol. 19: 1619-1624.

Cited by

  1. Application of cyanobacteria for chiral phosphonate synthesis vol.17, pp.9, 2013, https://doi.org/10.1039/c5gc01195g
  2. Effects of Modification of Light Parameters on the Production of Cryptophycin, Cyanotoxin with Potent Anticancer Activity, in Nostoc sp. vol.12, pp.12, 2013, https://doi.org/10.3390/toxins12120809