• Title/Summary/Keyword: competitive reaction

Search Result 213, Processing Time 0.026 seconds

A Study on Anaerobic Biodegradation of MTBE and BTEX by Indigenous Microorganisms (토착 미생물을 이용한 MTBE와 BTEX의 혐기성 생분해 연구)

  • Chung, Woo-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.88-94
    • /
    • 2016
  • The simultaneous biodegradation between MTBE (Gasoline additives) and BTEX (Benzene, Toluene, Ethyl-benzene, o-Xylene, m-Xylene, p-Xylene) was achieved within a competitive inter-relationship, with not only electron accepters such as nitrate, sulfate, and iron(III) without oxygen, but also with electron donors such as MTBE and BTEX. Preexisting indigenous microorganisms from a domestic sample of gasoline contaminated soil was used for a lab-scale batch test. The result of the test showed that the biodegradation rate of MTBE decreased when there was co-existing MTBE and BTEX, compared to having just MTBE present. The growth of indigenous microorganisms was not affected in the case of the MTBE treatment, whereas the growth of the microorganisms was decreased in combined MTBE and BTEX sample. This may indicate that an inhibitor related to biodegradation when BTEX and MTBE are mixed will be found. This inhibitor may be found to retard the anaerobic conditions needed for efficient breakdown of these complex carbon chain molecules in-situ. Moreover, it is also possible that an unknown competitive reaction is being imposed on the interactions between MTBE and BTEX dependent on conditions, ratios of mixture, etc.

Theoretical Studies on the Competitive Sn2 Reactions of O-Imidomethyl Derivatives of Phenols with OH-

  • Kim, Chang Gon;Jeong, Dong Su;Kim, Chan Gyeong;Lee, Bon Su;Jeong, Yeong Jin;Lee, Byeong Jun;Lee, Ik Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • Nucleophilic substitution reactions of O-imidomethyl derivatives of phenols with OH- were studied theoretically using the semiempirical AM1 and Solvation Model 2.1 (SM2.1) methods in the gas phase and aqueous solution, respectively. In the gas phase, the two reaction paths, in which the imide (1a) or phenol (1b) is functioning as a leaving group, can occur competitively. In contrast, in aqueous solution, path (1b) becomes more favorable than (1a) because the transition states (TS) of path (1b) are more stabilized by solvent. Differences in solvation energies are caused by the structural differences of TS, i.e., the TS via path (1b) is more dissociative than that via path (1a). Therefore we conclude that the solvent effects play an important role in the hydrolysis of O-imidomethyl derivatives of phenols. However, reactivity is dependent on the acidities of both the imide and the phenol fragments since the ρz values vary progressively from 4.2 (Z' = I) to 2.5 (Z' = IV) as the acidities of imide increase. These are in good agreement with the experimental results.

A Study on Reaction Kinetics in Steam Reforming of Natural Gas and Methane over Nickel Catalyst (니켈촉매 상에서 천연가스와 메탄의 수증기 개질 반응에 관한 Kinetics 연구)

  • Seong, Minjun;Lee, Young-Chul;Park, Young-Kwon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • Kinetics data were obtained for steam reforming of methane and natural gas over the commercial nickel catalyst. Variables for the steam reforming were the reaction temperature and partial pressure of reactants. Parameters for the Power law rate model and the Langmuir-Hinshelwood model were obtained from the kinetic data. As a result of the reforming reaction using pure methane as a reactant, the reaction rate could be determined by the Power law rate model as well as the Langmuir-Hinshelwood model. In the case of methane in natural gas, however, the Langmuir-Hinshelwood model is much more suitable than the Power law rate model in terms of explaining methane reforming reaction. This behavior can be attributed to the competitive adsorption of methane, ethane, propane and butane in natural gas over the same catalyst sites.

Kinetics and Mechanism of Nucleophilic Addition of Sodium Thiophenoxide to $\alpha$-(n-Butyl)-N-Phenylnitrone Derivatives ($\alpha$-(n-Butyl)-N-Phenylnitrone 유도체에 대한 Sodium Thiophenoxide의 친핵성 첨가반응 메카니즘과 그의 반응 속도론적 연구)

  • Lee, Gwang Il;Lee, Seok U;Gwak, Cheon Geun;Kim, Yeong Ju;No, Seung Il;Lee, Gi Chang
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.6
    • /
    • pp.442-448
    • /
    • 1994
  • The rate constants of the nucleophilic reaction of ${\alpha}$-(n-butyl)-N-phenylnitrone and its derivatives have been determined by ultraviolet spectrophotometry at $25^{\circ}C$ and a rate equation which can be applied over a wide pH range was obtained. Final product of the addition reaction was $\alpha$-phenylthiobutylidene-aniline. Base on the rate equation, genernal base effect, substituent effect and final product, plausible mechanism of addition reaction have been proposed. Below pH 3.0 the reaction was inititated by the addition of thiophenol, and in the range of pH 3.0∼10.0, proceeded by the competitive addition of thiophenol and thiophenoxide anion. Above the pH 10.0, the reaction proceeded through the addition of a thiophenoxide anion.

  • PDF

Nucleophilic Substitution Reactions of Benzoic Anhyrides with Aniline in Methanol-Acetonitrile Mixtures (메탄올-아세토니트릴 혼합용매에서 벤조산 무수물과 아닐린의 친핵성 치환반응)

  • Lee, Byung Choon;Shin, Young Kook;Lee, Seung Woo;Lee, Ik Choon;Lee, Won Heui
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.2
    • /
    • pp.69-76
    • /
    • 1997
  • Kinetic studies for the nucleophilic substitution reactions of the benzoic anhydrides with anilines in methanol-acetonitrile mixtures at$35.0{\circ}C$have been carried out in order to elucidate the reaction mechanism. Individual rate constants$k_{XY}$and$k_{XZ}$were decided from the ratios of the reaction products for the competitive substitution reaction at either one of the two carbonyl carbons in benzoic anhydride. Transition state structure and reaction mechanism were elucidated by the Hammett$p_x,\;p_y$and$p_z$values and cross interaction constant$p_x\;p_y$and$p_zvalues. The reaction of the benzoic anhydride has been proposed to proceed by a frontside attack$S_N2 $mechanism with four-membered ring transition state from unusually large magnitude of the$ρ_X,\;ρ_{XY},\;ρ_{XZ}$and positive$p_Y$values.

  • PDF

Kinetic Analysis of Isocitrate lyase from Saccharomycopsis lipolytica (Saccharomycopsis lipolytica isocitrate lyase의 Kinetic 분석)

  • Cho, Seok-Gum;Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.31 no.2
    • /
    • pp.137-142
    • /
    • 1988
  • The analysis of condensation and cleavage reaction was carried out at $30^{\circ}C$ and pH 7.0 with purified isocitrate lyase from Saccharomycopsis lipolytica ATCC 44601. The Km values for condensation reaction of glyoxylate and succinate were 0.06 and 0.21 mM, respectively. In the cleavage reaction, glyoxylate was a linear competitive inhibitor with a Ki of 0.22 mM and succinate was a linear noncompetitive inhibitor with a Ki of 0.82 mM. Therefore, these kinetic analyses showed that the enzyme functioned in a ordered reaction with glyoxylate binding before succinate in the condensation reaction. 3-Bromopyruvate(BrP) was found to be irreversibly inactivation showing saturation kinetics, the inactivation half-time was 0.15 min and $K_{BrP}$ was 0.032 mM, and substrate or reactant protected against the inactivation.

  • PDF

Adsorption of selected endocrine disrupting compounds (EDCs)/pharmaceutical active compounds (PhACs) onto granular activated carbon (GAC) : effect of single and multiple solutes (EDCs/PhACs의 단일,복합 조건에서의 GAC에 대한 흡착 연구)

  • Jung, Chanil;Son, Jooyoung;Yoon, Yeomin;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.235-248
    • /
    • 2014
  • The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A > carbamazepine > sulfamethoxazole > diclofenac > ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature ($40^{\circ}C$) than lower temperature ($10^{\circ}C$).

The Kinetics and Mechanism of Nucleophilic Addition of Hydrogen Cyanide to $ {\alpha}$-Cyano-$ {\beta}$-piperonylacrylic Acid ($ {\alpha}$-Cyano-$ {\beta}$-Piperonylacrylic Acid에 대한 Hydrogen Cyanide의 친핵성 첨가반응에 관한 연구)

  • Ki Sung Kwon;Tae Rin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.423-429
    • /
    • 1974
  • The rate constant of the addition of hydrogen cyanide to $ ${\alpha}$-cyano-\beta-piperonylacrylic$ acid (CPA) were determined by UV spectrophotometry at various pH and a rate equation which can be applied over wide pH range was obtained. From this equation, one may conclude that below pH 3 the reaction is started by the addition of hydrogen cyanide molecule to CPA, however, at pH 6~8, hydrogen cyanide is added to $ {\alpha}$-cyano-$ {\beta}$-piperonyl acrylate anion. From pH 3 to 6, these two reaction are competitive. Above pH 9, the reaction is proceeded by the addition of cyanide ion to $ {\alpha}$-cyano-$ {\beta}$-piperonyl acrylate ion. From pH 3 to 9, the complex reaction mechanism can also be fully explained by the rate equation obtained.

  • PDF

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

Isolation and Characterization of Cathepsin B inhilbitor Produced by Streptomyces luteogriseus KT-10 (Streptomyces luteogriseus KT-10 이 생산하는 Cathepsin B 저해물질의 분리 및 특성)

  • 한길환;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.84-89
    • /
    • 2001
  • Isolation and Characterization of Cathepsin B inhibitor Produced by Streptomyces luteogriseus KT-IO. Han, Kil~Hwan and Sang~Dal Kim*. Department of Applied Microbiology, Yeungnam Universit}/t Kyongsan 712749, Korea - The cathepsin B inhibitor produced by Streptomyces luteogriseus KT-IO was very stable in heat, acidic and alkaline conditions. The cathepsin B inhibitor was isolated from the extracted fraction of culture broth with butanol, methanol and chloroform subsequently, the inhibitor was purified with following several column chromatography sLlch as DEAE-Sephadex A-25, Sephadex G-15, silica gel 60, Sephadex LH-20, and preparative HPLC. The cathepsin B inhibitor showed positively to detective reaction of ninhydrine, 5% H2S04, iodine, but negatively to the reaction of Ehrlich's reagent, DNS, aniline. The molecular formular of cathepsin B inhibitor was elucidated by JR, lH and 13C-NMR, FAB mass and elemental analyzer. Consequently, it was identified as C4HlI04N6. The cathepsin B inhibitor had the mode of competitive inhibition with the reaction of cathepsin B.

  • PDF