• Title/Summary/Keyword: compatible mapping of type(${\alpha}$)

Search Result 4, Processing Time 0.016 seconds

COMPATIBLE MAPS OF TWO TYPES AND COMMON FIXED POINT THEOREMS ON INTUITIONISTIC FUZZY METRIC SPACE

  • Park, Jong-Seo
    • Honam Mathematical Journal
    • /
    • v.32 no.2
    • /
    • pp.283-298
    • /
    • 2010
  • In this paper, we introduce the concept of compatible mapping of type(${\alpha}$-1) and type(${\alpha}$-2), prove the some properties and common fixed point theorem for such maps in intuitionistic fuzzy metric space. Also, we give the example. Our research are an extension for the results of Kutukcu and Sharma[3] and Park et.al.[11].

On Some Results for Five Mappings using Compatibility of Type(α) in Intuitionistic Fuzzy Metric Space

  • Park, Jong-Seo;Park, Jin-Han;Kwun, Young-Chel
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.299-305
    • /
    • 2008
  • The object of this paper is to introduce the notion of compatible mapping of type(${\alpha}$) in intuitionistic fuzzy metric space, and to establish common fixed point theorem for five mappings in intuitionistic fuzzy metric space. Our research are an extension for the results of [1] and [7].

EMPLOYING α-ψ-CONTRACTION TO PROVE COUPLED COINCIDENCE POINT THEOREM FOR GENERALIZED COMPATIBLE PAIR OF MAPPINGS ON PARTIALLY ORDERED METRIC SPACES

  • Deshpande, Bhavana;Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.73-94
    • /
    • 2018
  • We introduce some new type of admissible mappings and prove a coupled coincidence point theorem by using newly defined concepts for generalized compatible pair of mappings satisfying ${\alpha}-{\psi}$ contraction on partially ordered metric spaces. We also prove the uniqueness of a coupled fixed point for such mappings in this setup. Furthermore, we give an example and an application to integral equations to demonstrate the applicability of the obtained results. Our results generalize some recent results in the literature.