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EMPLOYING α-ψ-CONTRACTION TO PROVE COUPLED

COINCIDENCE POINT THEOREM FOR GENERALIZED

COMPATIBLE PAIR OF MAPPINGS ON PARTIALLY ORDERED

METRIC SPACES

Bhavana Deshpande a, ∗ and Amrish Handa b

Abstract. We introduce some new type of admissible mappings and prove a cou-
pled coincidence point theorem by using newly defined concepts for generalized
compatible pair of mappings satisfying α− ψ contraction on partially ordered met-
ric spaces. We also prove the uniqueness of a coupled fixed point for such mappings
in this setup. Furthermore, we give an example and an application to integral equa-
tions to demonstrate the applicability of the obtained results. Our results generalize
some recent results in the literature.

1. Introduction and Preliminaries

For simplicity, if x ∈ X, we denote T (x) by Tx. In [9], Guo and Lakshmikantham

introduced the following notion of coupled fixed point for single-valued mappings:

Definition 1. Let F : X ×X → X be a mapping. An element (x, y) ∈ X ×X is

called a coupled fixed point of F if

F (x, y) = x and F (y, x) = y.

In [3], Bhaskar and Lakshmikantham gave the notion of mixed monotone property

and proved some coupled fixed point theorems for a mapping having mixed monotone

property in partially ordered metric spaces.

Bhaskar and Lakshmikantham [3] introduced the following:

Definition 2. Let (X, ≼) be a partially ordered set and endow the product space

X ×X with the following partial order:

Received by the editors November 26, 2016. Accepted March 09, 2018.
2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. coupled coincidence point, α− ψ contraction, generalized compatibility,

increasing mapping, mixed monotone mapping, commuting mapping.
∗Corresponding author.

c⃝ 2018 Korean Soc. Math. Educ.

73



74 Bhavana Deshpande & Amrish Handa

(u, v) ≼ (x, y) ⇔ x ≽ u and y ≼ v, for all (u, v), (x, y) ∈ X ×X.

Definition 3. Let (X, ≤) be a partially ordered set. Suppose F : X ×X → X be a

given mapping. We say that F has the mixed monotone property if for all x, y ∈ X,

we have

x1, x2 ∈ X, x1 ≼ x2 =⇒ F (x1, y) ≼ F (x2, y),

and

y1, y2 ∈ X, y1 ≼ y2 =⇒ F (x, y1) ≽ F (x, y2).

Lakshmikantham and Ciric [13] extended the notion of mixed monotone property

to mixed g−monotone property and generalized the results of Bhaskar and Laksh-

mikantham [3].

In [13], Lakshmikantham and Ciric introduced the following:

Definition 4. Let F : X ×X → X and g : X → X be two mappings. An element

(x, y) ∈ X ×X is called a coupled coincidence point of the mappings F and g if

F (x, y) = gx and F (y, x) = gy.

Definition 5. Let F : X ×X → X and g : X → X be two mappings. An element

(x, y) ∈ X ×X is called a common coupled fixed point of the mappings F and g if

x = F (x, y) = gx and y = F (y, x) = gy.

Definition 6. The mappings F : X × X → X and g : X → X are said to be

commutative if

gF (x, y) = F (gx, gy), for all (x, y) ∈ X ×X.

Definition 7. Let (X, ≤) be a partially ordered set. Suppose F : X ×X → X and

g : X → X are given mappings. Then F has the mixed g−monotone property if for

all x, y ∈ X, we have

x1, x2 ∈ X, gx1 ≼ gx2 =⇒ F (x1, y) ≼ F (x2, y)

and

y1, y2 ∈ X, gy1 ≼ gy2 =⇒ F (x, y1) ≽ F (x, y2).

If g is the identity mapping on X, then F satisfies the mixed monotone property.

In [5], Choudhury and Kundu gave the notion of compatibility in the context

of coupled coincidence point and used this notion to improve the results of Laksh-

mikantham and Ciric [13].
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Definition 8 ([5]). The mappings F : X × X → X and g : X → X are said to be

compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0,

lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x,

lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y, for some x, y ∈ X.

In [11], Hussain et al. introduced a new concept of generalized compatibility of a pair

of mappings defined on a product space and proved some coupled coincidence point

results and also proved some coupled fixed point results without mixed monotone

property.

In [11], Hussain et al. introduced the following:

Definition 9. Suppose that F, G : X ×X → X are two mappings. F is said to be

G−increasing with respect to ≼ if for all x, y, u, v ∈ X, with G(x, y) ≤ G(u, v) we

have F (x, y) ≤ F (u, v).

Example 10. Let X = (0, +∞) be endowed with the natural ordering of real

numbers ≤ . Define mappings F, G : X ×X → X by F (x, y) = ln(x+ y) and G(x,

y) = x+ y for all (x, y) ∈ X ×X. Note that F is G−increasing with respect to ≤ .

Example 11. Let X = N endowed with the partial order defined by x, y ∈ X ×X,

x ≼ y if and only if y divides x. Define the mappings F, G : X ×X → X by F (x,

y) = x2y2 and G(x, y) = xy for all (x, y) ∈ X ×X. Then F is G−increasing with

respect to ≼ .

Definition 12. An element (x, y) ∈ X ×X is called a coupled coincidence point of

mappings F, G : X ×X → X if F (x, y) = G(x, y) and F (y, x) = G(y, x).

Example 13. Let F, G : R × R → R be defined by F (x, y) = xy and G(x,

y) = 2
3(x+ y) for all (x, y) ∈ X ×X. Note that (0, 0), (1, 2) and (2, 1) are coupled

coincidence points of F and G.

Definition 14. Let F, G : X ×X → X be two maps. We say that the pair {F, G}
is commuting if

F (G(x, y), G(y, x)) = G(F (x, y), F (y, x)), for all x, y ∈ X.
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Definition 15. Let (X, ≤) be a partially ordered set, F : X × X → X and

g : X → X. We say that F is g−increasing with respect to ≼ if for any x, y ∈ X,

gx1 ≼ gx2 implies F (x1, y) ≼ F (x2, y),

and

gy1 ≼ gy2 implies F (x, y1) ≼ F (x, y2).

Definition 16. Let (X, ≤) be a partially ordered set, F : X×X → X. We say that

F is increasing with respect to ≼ if for any x, y ∈ X,

x1 ≼ x2 implies F (x1, y) ≼ F (x2, y),

and

y1 ≼ y2 implies F (x, y1) ≼ F (x, y2).

Definition 17. Let F, G : X ×X → X. We say that the pair {F, G} is generalized

compatible if

lim
n→∞

d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) = 0,

lim
n→∞

d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) = 0,

whenever (xn) and (yn) are sequences in X such that

lim
n→∞

G(xn, yn) = lim
n→∞

F (xn, yn) = x,

lim
n→∞

G(yn, xn) = lim
n→∞

F (yn, xn) = y, for all x, y.

Obviously, a commuting pair is a generalized compatible but not conversely in gen-

eral.

Recently, Samet et al. [19] defined the following definition of α−admissible map-

ping and proved coupled fixed point theorems in complete metric spaces.

Definition 18. Let F : X×X → X and α : X2×X2 → [0, +∞) be two mappings.

Then F is said to be (α)−admissible if

α((x, y), (u, v)) ≥ 1 ⇒ α((F (x, y), F (y, x)), (F (u, v), F (v, u))) ≥ 1,

for all x, y, u, v ∈ X.

Let Ψ denote the set of all functions ψ : [0, +∞) → [0, +∞) such that
∞∑
n=1

ψn(t)<

∞ for all t > 0, where ψn is the nth iterate of ψ satisfying

(i) ψ−1{0} = 0,

(ii) ψ(t) < t, for all t > 0,



EMPLOYING α-ψ-CONTRACTION 77

(iiφ) limr→t+ ψ(r) < t for all t > 0.

Lemma 19 ([15]). If ψ : [0, +∞) → [0, +∞) is non-decreasing and right con-

tinuous, then ψn(t) → 0 as n → ∞ for all t ≥ 0 if and only if ψ(t) < t for all

t > 0.

Definition 20. An ordered metric space (X, d, ≼) is a metric space (X, d) provided

with a partial order ≼ .

In [15], Mursaleen et al. established the following result:

Theorem 21. Let (X, d, ≼) be a partially ordered complete metric space. Let

F : X ×X → X be a mapping having the mixed monotone property of X satisfying

(i) for all x, y, u, v ∈ X, where x ≽ u, y ≼ v, there exist ψ ∈ Ψ and α :

X2 ×X2 → [0, +∞) such that

α((x, y), (u, v))d(F (x, y), F (u, v)) ≤ ψ

(
d(x, u) + d(y, v)

2

)
,

(ii) F is (α)−admissible,

(iii) there exist x0, y0 ∈ X such that

α((x0, y0), (F (x0, y0), F (y0, x0))) ≥ 1,

α((y0, x0), (F (y0, x0), F (x0, y0))) ≥ 1,

(iv) suppose that either

(a) F is continuous or

(b) if (xn) and (yn) are sequences in X such that

α((xn, yn), (xn+1, yn+1)) ≥ 1 and α((yn, xn), (yn+1, xn+1)) ≥ 1,

for all n ∈ N and

lim
n→∞

xn = x ∈ X and lim
n→∞

yn = y ∈ X,

then

α((xn, yn), (x, y)) ≥ 1 and α((yn, xn), (y, x)) ≥ 1,

(v) there exist x0, y0 ∈ X such that

x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0),

then F has a coupled fixed point.

Very recently Samet et al. [17] claimed that most of the coupled fixed point

theorems for single-valued mappings on ordered metric spaces are consequences of
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well-known fixed point theorems. There exists several coupled fixed point results for

single valued mappings including [2, 4, 6, 7, 8, 9, 10, 11, 12, 15, 16, 18, 20].

In this paper, we define some new type of admissible mappings and prove a

coupled coincidence point results by using newly defined concepts for generalized

compatible pair of mappings satisfying α− ψ contraction on partially ordered met-

ric space. We also prove the uniqueness of a coupled fixed point for such mappings.

Furthermore, we give an example and an application to integral equations to demon-

strate the applicability of the obtained results. We generalize the results of Bhaskar

and Lakshmikantham [3], Lakshmikantham and Ciric [13], Mursaleen et al. [15] and

many others.

2. Main Results

First, we introduce the following:

Definition 22. Let F, G : X ×X → X and α : X2 ×X2 → [0, +∞) be mappings.

Then F is said to be (αG)−admissible if

α

(
(G(x, y), G(y, x)),
(G(u, v), G(v, u))

)
≥ 1 ⇒ α

(
(F (x, y), F (y, x)),
(F (u, v), F (v, u))

)
≥ 1,

for all x, y, u, v ∈ X.

Definition 23. Let F : X ×X → X, g : X → X and α : X2 ×X2 → [0, +∞) be

mappings. Then F is said to be (αg)−admissible if

α ((gx, gy), (gu, gv)) ≥ 1 ⇒ α

(
(F (x, y), F (y, x)),
(F (u, v), F (v, u))

)
≥ 1,

for all x, y, u, v ∈ X.

Theorem 24. Let (X, d, ≼) be a partially ordered complete metric space. Assume F,

G : X×X → X be two generalized compatible mappings such that F is G−increasing

with respect to ≼, G is continuous and has the mixed monotone property satisfying

(1) there exist two elements x0, y0 ∈ X such that

α((G(x0, y0), G(y0, x0)), (F (x0, y0), F (y0, x0))) ≥ 1,

α((G(y0, x0), G(x0, y0)), (F (y0, x0), F (x0, y0))) ≥ 1,

(2) for all x, y, u, v ∈ X, where G(x, y) ≼ G(u, v) and G(y, x) ≽ G(v, u), there
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exist ψ ∈ Ψ and α : X2 ×X2 → (0, +∞) such that

α

(
(G(x, y), G(y, x)),
(G(u, v), G(v, u))

)
d(F (x, y), F (u, v))

≤ ψ

(
d(G(x, y), G(u, v)) + d(G(y, x), G(v, u))

2

)
,

(3) for any x, y ∈ X, there exist u, v ∈ X such that

F (x, y) = G(u, v) and F (y, x) = G(v, u),

(4) suppose that either

(a) F is continuous or

(b) if (xn) and (yn) are sequences in X such that

α((G(xn, yn), G(yn, xn)), (G(xn+1, yn+1), G(yn+1, xn+1))) ≥ 1,

α((G(yn, xn), G(xn, yn)), (G(yn+1, xn+1), G(xn+1, yn+1))) ≥ 1,

for all n ∈ N and limn→∞G(xn, yn) = x ∈ X and limn→∞G(yn, xn) = y ∈ X, then

α((G(xn, yn), G(yn, xn)), (G(x, y), G(y, x))) ≥ 1,

α((G(yn, xn), G(xn, yn)), (G(y, x), G(x, y))) ≥ 1,

(5) there exist two elements x0, y0 ∈ X such that

G(x0, y0) ≼ F (x0, y0) and G(y0, x0) ≽ F (y0, x0).

Then F and G have a coupled coincidence point.

Proof. By hypothesis, there exist x0, y0 ∈ X such that

α((G(x0, y0), G(y0, x0)), (F (x0, y0), F (y0, x0))) ≥ 1,

α((G(y0, x0), G(x0, y0)), (F (y0, x0), F (x0, y0))) ≥ 1.

By using (3), select x1, y1 ∈ X such that

G(x1, y1) = F (x0, y0) and G(y1, x1) = F (y0, x0).

Continuing in this manner, we construct sequences {xn} and {yn} in X such that

(6) G(xn+1, yn+1) = F (xn, yn) and G(yn+1, xn+1) = F (yn, xn), for all n ≥ 0.

We shall show that

(7) G(xn, yn) ≼ G(xn+1, yn+1) and G(yn, xn) ≽ G(yn+1, xn+1), for all n ≥ 0.
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We shall use the mathematical induction. Let n = 0, since

G(x0, y0) ≼ F (x0, y0) = G(x1, y1),

G(y0, x0) ≽ F (y0, x0) = G(y1, x1),

we have

G(x0, y0) ≼ G(x1, y1) and G(y0, x0) ≼ G(y1, x1).

Thus (7) hold for n = 0. Suppose now that (7) hold for some fixed n ∈ N. Then

G(xn, yn) ≼ G(xn+1, yn+1) and G(yn, xn) ≼ G(yn+1, xn+1).

Since F is G−increasing with respect to ≼, by using (6), we have

G(xn+1, yn+1) = F (xn, yn) ≼ F (xn+1, yn+1) = G(xn+2, yn+2),

G(yn+1, xn+1) = F (yn, xn) ≽ F (yn+1, xn+1) = G(yn+2, xn+2).

Thus by the mathematical induction we conclude that (7) hold for all n ≥ 0. There-

fore

G(x0, y0) ≼ G(x1, y1) ≼ ... ≼ G(xn, yn) ≼ G(xn+1, yn+1) ≼ ...

and

G(y0, x0) ≽ G(y1, x1) ≽ ... ≽ G(yn, xn) ≽ G(yn+1, xn+1) ≽ ...

Since F is (αG)−admissible, we have

α ((G(x0, y0), G(y0, x0)), (G(x1, y1), G(y1, x1)))

= α ((G(x0, y0), G(y0, x0)), (F (x0, y0), F (y0, x0))) ≥ 1,

which implies that

α ((F (x0, y0), F (y0, x0)), (F (x1, y1), F (y1, x1)))

= α ((G(x1, y1), G(y1, x1)), (G(x2, y2), G(y2, x2))) ≥ 1.

Thus, by the mathematical induction, for all n ∈ N, we have

(8) α ((G(xn, yn), G(yn, xn)), (G(xn+1, yn+1), G(yn+1, xn+1))) ≥ 1.

Similarly

(9) α (G(yn, xn), (G(xn, yn)), (G(yn+1, xn+1), G(xn+1, yn+1))) ≥ 1.
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Now by (2) and (8), we have

d(G(xn, yn), G(xn+1, yn+1))

= d(F (xn−1, yn−1), F (xn, yn))

≤ α ((G(xn−1, yn−1), G(yn−1, xn−1)), (G(xn, yn), G(yn, xn)))

×d(F (xn−1, yn−1), F (xn, yn))

≤ ψ

(
d(G(xn−1, yn−1), G(xn, yn)) + d(G(yn−1, xn−1), G(yn, xn))

2

)
.

Similarly, we have

d(G(yn, xn), G(yn+1, xn+1))

≤ ψ

(
d(G(xn−1, yn−1), G(xn, yn)) + d(G(yn−1, xn−1), G(yn, xn))

2

)
.

Combining them, we get

d(G(xn, yn), G(xn+1, yn+1)) + d(G(yn, xn), G(yn+1, xn+1))

2

≤ ψ

(
d(G(xn−1, yn−1), G(xn, yn)) + d(G(yn−1, xn−1), G(yn, xn))

2

)
.

Repeating the above process, we get

d(G(xn, yn), G(xn+1, yn+1)) + d(G(yn, xn), G(yn+1, xn+1))

2

≤ ψn
(
d(G(x0, y0), G(x1, y1)) + d(G(y0, x0), G(y1, x1))

2

)
,

for all n ∈ N. Without any loss of generality, we can assume that 1
2 [d(G(x0, y0),

G(x1, y1)) + d(G(y0, x0), G(y1, x1))] ̸= 0. In fact, if this is not true, then G(x0,

y0) = G(x1, y1) = F (x0, y0), G(y0, x0) = G(y1, x1) = F (y0, x0), that is, (x0, y0) is

a coupled coincidence point of F and G. For ε > 0 there exists n(ε) ∈ N such that

(10)
∑

n≥n(ε)

ψn
(
d(G(x0, y0), G(x1, y1)) + d(G(y0, x0), G(y1, x1))

2

)
<
ε

2
.

Let n, m ∈ N be such that m > n > n(ε). Then, by using the triangle inequality

and (10), we have

d(G(xn, yn), G(xm, ym)) + d(G(yn, xn), G(ym, xm))

2
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≤
m−1∑
k=n

d(G(xk, yk), G(xk+1, yk+1)) + d(G(yk, xk), G(yk+1, xk+1))

2

≤
m−1∑
k=n

ψk
(
d(G(x0, y0), G(x1, y1)) + d(G(y0, x0), G(y1, x1))

2

)
≤

∑
n≥n(ε)

ψn
(
d(G(x0, y0), G(x1, y1)) + d(G(y0, x0), G(y1, x1))

2

)
<
ε

2
.

This implies that

(11) d(G(xn, yn), G(xm, ym)) + d(G(yn, xn), G(ym, xm)) < ε.

Thus, by (11), we get

d(G(xn, yn), G(xm, ym)) ≤
[

d(G(xn, yn), G(xm, ym))
+d(G(yn, xn), G(ym, xm))

]
< ε,

d(G(yn, xn), G(ym, xm)) ≤
[

d(G(xn, yn), G(xm, ym))
+d(G(yn, xn), G(ym, xm))

]
< ε,

it follows that {G(xn, yn)} and {G(yn, xn)} are Cauchy sequences in X. Since X is

complete, therefore there is some x, y ∈ X such that

lim
n→∞

G(xn, yn) = lim
n→∞

F (xn, yn) = x,(12)

lim
n→∞

G(yn, xn) = lim
n→∞

F (yn, xn) = y,

Since the pair {F, G} satisfies the generalized compatibility, from (12), we get

(13) lim
n→∞

d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) = 0,

and

(14) lim
n→∞

d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) = 0.

Now suppose that assumption (a) holds. Then

d(F (G(xn, yn), G(yn, xn)), G(x, y))

≤ d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn)))

+d(G(F (xn, yn), F (yn, xn)), G(x, y)).

Taking limit as n→ ∞ in the above inequality, using (12), (13) and the fact that F

and G are continuous, we have

F (x, y) = G(x, y).

Similarly we can show that

F (y, x) = G(y, x).
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Thus (x, y) is a coupled coincidence point of F and G.

Now, suppose that (b) holds. Then, by (8) and (12), we have

(15) α((G(xn, yn), G(yn, xn)), (G(x, y), G(y, x))) ≥ 1.

Similarly, we have

(16) α((G(yn, xn), G(xn, yn)), (G(y, x), G(x, y))) ≥ 1.

Now, using (2), we get

d (F (G(xn, yn), G(yn, xn)), F (x, y))

≤ α

((
G (G(xn, yn), G(yn, xn)) ,
G (G(yn, xn), G(xn, yn))

)
, (G(x, y), G(y, x))

)
×d (F (G(xn, yn), G(yn, xn)), F (x, y))

≤ ψ

(
1

2

[
d(G(G(xn, yn), G(yn, xn)), G(x, y))
+d(G(G(yn, xn), G(xn, yn)), G(y, x))

])
which implies by the fact that ψ(t) < t for all t > 0,

d (F (G(xn, yn), G(yn, xn)), F (x, y))

≤ 1

2

[
d(G(G(xn, yn), G(yn, xn)), G(x, y))
+d(G(G(yn, xn), G(xn, yn)), G(y, x))

]
.

Taking limit as n → ∞ in the above inequality, by using (12), (13) and by the

continuity of G, we have

lim
n→∞

d (G(F (xn, yn), F (yn, xn)), F (x, y))

= lim
n→∞

d (F (G(xn, yn), G(yn, xn)), F (x, y))

≤ 1

2
lim
n→∞

[
d(G(G(xn, yn), G(yn, xn)), G(x, y))
+d(G(G(yn, xn), G(xn, yn)), G(y, x))

]
,

which implies that

F (x, y) = G(x, y).

Similarly we can show that

F (y, x) = G(y, x).

Thus (x, y) is a coupled coincidence point of F and G. �

Corollary 25. Let (X, d, ≼) be a partially ordered complete metric space. Assume

F, G : X × X → X be two commuting mappings such that F is G−increasing

with respect to ≼, G is continuous and has the mixed monotone property satisfying

(1)− (5). Then F and G have a coupled coincidence point.

Now, we deduce following results which are analogous to Theorem 21:
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Corollary 26. Let (X, d, ≼) be a partially ordered complete metric space. Assume

F : X ×X → X and g : X → X be two mappings such that F is g−increasing with

respect to ≼ and {F, g} is compatible. Suppose that

(17) there exist two elements x0, y0 ∈ X such that

α((gx0, gy0), (F (x0, y0), F (y0, x0))) ≥ 1,

α((gy0, gx0), (F (y0, x0), F (x0, y0))) ≥ 1,

(18) for all x, y, u, v ∈ X, where gx ≼ gu and gy ≽ gv, there exist ψ ∈ Ψ and

α : X2 ×X2 → (0, +∞) such that

α((gx, gy), (gu, gv))d(F (x, y), F (u, v)) ≤ ψ

(
d(gx, gu) + d(gy, gv)

2

)
,

(19) F (X ×X) ⊆ g(X), g is continuous and monotone increasing with respect to ≼,
(20) suppose that either

(a) F is continuous or

(b) if (xn) and (yn) are sequences in X such that

α((gxn, gyn), (gxn+1, gyn+1)) ≥ 1,

α((gyn, gxn), (gyn+1, gxn+1)) ≥ 1,

for all n ∈ N and

lim
n→∞

gxn = x ∈ X and lim
n→∞

gyn = y ∈ X,

then

α((gxn, gyn), (gx, gy)) ≥ 1,

α((gyn, gxn), (gy, gx)) ≥ 1,

(21) there exist two elements x0, y0 ∈ X such that

gx0 ≼ F (x0, y0) and gy0 ≽ F (y0, x0).

Then F and g have a coupled coincidence point.

Corollary 27. Let (X, d, ≼) be a partially ordered complete metric space. Assume

F : X ×X → X and g : X → X be two mappings such that F is g−increasing with

respect to ≼ and {F, g} is commuting satisfying (17) − (21), then F and g have a

coupled coincidence point.

Corollary 28. Let (X, d, ≼) be a partially ordered complete metric space. Assume

F : X ×X → X be an increasing mapping with respect to ≼ satisfying
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(22) there exist two elements x0, y0 ∈ X such that

α((x0, y0), (F (x0, y0), F (y0, x0))) ≥ 1,

α((y0, x0), (F (y0, x0), F (x0, y0))) ≥ 1,

(23) for all x, y, u, v ∈ X, where x ≼ u and y ≽ v, there exist ψ ∈ Ψ and

α : X2 ×X2 → (0, +∞) such that

α((x, y), (u, v))d(F (x, y), F (u, v)) ≤ ψ

(
d(x, u) + d(y, v)

2

)
,

(24) suppose that either

(a) F is continuous or

(b) if (xn) and (yn) are sequences in X such that

α((xn, yn), (xn+1, yn+1)) ≥ 1,

α((yn, xn), (yn+1, xn+1)) ≥ 1,

for all n ∈ N and

lim
n→∞

xn = x ∈ X and lim
n→∞

yn = y ∈ X,

then

α((xn, yn), (x, y)) ≥ 1,

α((yn, xn), (y, x)) ≥ 1,

(25) there exist two elements x0, y0 ∈ X such that

x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0).

Then F has a coupled fixed point.

Example 29. SupposeX = [0, 1] provided with its usual order ≤ and the Euclidean

metric d(x, y) = |x− y| for all x, y ∈ X. Let F, G : X ×X → X be defined as

F (x, y) =

{
x2−y2

4 , if x ≥ y,
0, if x < y,

and

G(x, y) =

{
x2 − y2, if x ≥ y,

0, if x < y.

Define α : X2 ×X2 → (0, +∞) as follows

α((x, y), (u, v)) =

{
1, if x ≥ y, u ≥ v,

0, otherwise,
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and ψ : [0, +∞) → [0, +∞) as follows

ψ(t) =
t

2
for all t > 0.

First, we shall show that F and G satisfy the contractive condition (2). Let x, y ∈ X

such that G(x, y) ≤ G(u, v) and G(y, x) ≥ G(v, u), we have

α ((G(x, y), G(y, x)), (G(u, v), G(v, u))) d(F (x, y), F (u, v))

≤ d(F (x, y), F (u, v))

≤
∣∣∣∣x2 − y2

4
− u2 − v2

4

∣∣∣∣
≤ 1

4
|G(x, y)−G(u, v)|

≤ 1

4
d(G(x, y), G(u, v))

≤ 1

2

(
d(G(x, y), G(u, v)) + d(G(y, x), G(v, u))

2

)
≤ ψ

(
d(G(x, y), G(u, v)) + d(G(y, x), G(v, u))

2

)
.

Thus the contractive condition (2) is satisfied for all x, y, u, v ∈ X. The other

conditions of Theorem 24 are satisfied like in [10] and z = (0, 0) is a coincidence

point of F and G.

Now we prove the uniqueness of the coupled coincidence point. If (X, ≼) is a

partially ordered set, then we endow the product X ×X with the following partial

order relation,

(x, y) ≼ (u, v) ⇐⇒ G(x, y) ≼ G(u, v) and G(y, x) ≽ G(v, u),

for all (x, y), (u, v) ∈ X ×X, where G : X ×X → X is one-one.

Theorem 30. In addition to the hypotheses of Theorem 24, suppose that for every

(x, y), (x∗, y∗) in X ×X, there exists another (u, v) in X ×X which is comparable

to (x, y) and (x∗, y∗), then F and G have a unique coupled coincidence point.

Proof. Theorem 24 shows that the set of coupled coincidence points of F and G is

non-empty. Let (x, y), (x∗, y∗) ∈ X × X are two coupled coincidence points of F

and G, that is,

F (x, y) = G(x, y) and F (y, x) = G(y, x),

F (x∗, y∗) = G(x∗, y∗) and F (y∗, x∗) = G(y∗, x∗).
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We shall prove that G(x, y) = G(x∗, y∗) and G(y, x) = G(y∗, x∗). By assumption,

there exists (u, v) ∈ X ×X which is comparable to (x, y) and (x∗, y∗). We define

the sequences {G(un, vn)} and {G(vn, un)} as follows, with u0 = u, v0 = v :

G(un+1, vn+1) = F (un, vn), G(vn+1, un+1) = F (vn, un), n ≥ 0.

Since (u, v) is comparable to (x, y), we may assume that (x, y) ≼ (u, v) = (u0,

v0), which implies that G(x, y) ≼ G(u0, v0) and G(y, x) ≽ G(v0, u0). Suppose (x,

y) ≼ (un, vn) for some n. Since F is G−increasing, we have G(x, y) ≼ G(un, vn)

implies F (x, y) ≼ F (un, vn) and G(y, x) ≽ G(vn, un) implies F (y, x) ≽ F (vn, un).

We now prove that (x, y) ≼ (un+1, vn+1). Therefore G(x, y) = F (x, y) ≼ F (un,

vn) = G(un+1, vn+1) and G(y, x) = F (y, x) ≽ F (vn, un) = G(vn+1, un+1). Thus,

we have (x, y) ≼ (un+1, vn+1), for all n. Since for every (x, y), (x∗, y∗) in X ×X,

there exists (u, v) in X ×X such that

α ((G(x, y), G(y, x)), (G(u, v), G(v, u))) ≥ 1,

α ((G(x∗, y∗), G(y∗, x∗)), (G(u, v), G(v, u))) ≥ 1.

Since F is (αG)−admissible, we have

α ((G(x, y), G(y, x)), (G(u, v), G(v, u))) ≥ 1

implies that α ((F (x, y), F (y, x)), (F (u, v), F (v, u))) ≥ 1,

Put u = u0 and v = v0, we get

α ((G(x, y), G(y, x)), (G(u, v), G(v, u))) ≥ 1

implies that α ((F (x, y), F (y, x)), (F (u0, v0), F (v0, u0))) ≥ 1.

Thus

α ((G(x, y), G(y, x)), (G(u, v), G(v, u))) ≥ 1

implies that α ((G(x, y), G(y, x)), (G(u1, v1), G(v1, u1))) ≥ 1.

Thus, by the mathematical induction, we obtain

α ((G(x, y), G(y, x)), (G(un, vn), G(vn, un))) ≥ 1, for all n ∈ N.

Similarly

α ((G(y, x), G(x, y)), (G(vn, un), G(un, vn))) ≥ 1, for all n ∈ N.
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Now, by using (2), we have

d(G(x, y), G(un+1, vn+1))

= d(F (x, y), F (un, vn))

≤ α ((G(x, y), G(y, x)), (G(un, vn), G(vn, un)))

×d(F (x, y), F (un, vn))

≤ ψ

(
d(G(x, y), G(un, vn)) + d(G(y, x), G(vn, un))

2

)
.

Thus

d(G(x, y), G(un+1, vn+1))(26)

≤ ψ

(
d(G(x, y), G(un, vn)) + d(G(y, x), G(vn, un))

2

)
.

Similarly, we have

d(G(y, x), G(vn+1, un+1))(27)

≤ ψ

(
d(G(y, x), G(vn, un)) + d(G(x, y), G(un, vn))

2

)
.

Combining (26) and (27), we get

d(G(x, y), G(un+1, vn+1)) + d(G(y, x), G(vn+1, un+1))

2

≤ ψ

(
d(G(x, y), G(un, vn)) + d(G(y, x), G(vn, un))

2

)
.

Thus

d(G(x, y), G(un+1, vn+1)) + d(G(y, x), G(vn+1, un+1))

2

≤ ψn
(
d(G(x, y), G(u1, v1)) + d(G(y, x), G(v1, u1))

2

)
,

for each n ∈ N. Letting n→ ∞ in the above inequality and using Lemma 19, we get

G(x, y) = lim
n→∞

G(un+1, vn+1) and G(y, x) = lim
n→∞

G(vn+1, un+1).

Similarly, we can show that

G(x∗, y∗) = lim
n→∞

G(un+1, vn+1) and G(y
∗, x∗) = lim

n→∞
G(vn+1, un+1).

Thus G(x, y) = G(x∗, y∗) and G(y, x) = G(y∗, x∗). �
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3. Application to Integral Equations

Now, we study the existence of the solution to a Fredholm nonlinear integral

equation as an application of the results obtained in the previous section. Consider

the following integral equation

(28) x(p) =

∫ b

a
(K1(p, q) +K2(p, q)) [f(q, x(q)) + g(q, x(q))] dq + h(p),

for all p ∈ I = [a, b].

Let Θ denote the set of all functions θ : [0, +∞) → [0, +∞) satisfying

(iθ) θ is non-decreasing,

(iiθ) θ(p) ≤ p.

Assumption 31. We assume that the functions K1, K2, f, g fulfill the following

conditions:

(i) K1(p, q) ≥ 0 and K2(p, q) ≤ 0 for all p, q ∈ I,

(ii) There exist positive numbers λ, µ and θ ∈ Θ such that for all x, y ∈ R with

x ≽ y, the following conditions hold:

(29) 0 ≤ f(q, x)− f(q, y) ≤ λθ(x− y),

and

(30) −µθ(x− y) ≤ g(q, x)− g(q, y) ≤ 0,

(iii)

(31) max{λ, µ} sup
p∈I

∫ b

a
[K1(p, q)−K2(p, q)]dq ≤

1

8
.

Definition 32 ([14]). A pair (α̃, β̃) ∈ X × X with X = C(I, R), where C(I, R)
denote the set of all continuous functions from I to R, is called a coupled lower-upper

solution of (28) if, for all p ∈ I,

α̃(p) ≤
∫ b

a
K1(p, q)[f(q, α̃(q)) + g(q, β̃(q))]dq

+

∫ b

a
K2(p, q)[f(q, β̃(q)) + g(q, α̃(q))]dq + h(p)
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and

β̃(q) ≥
∫ b

a
K1(p, q)[f(q, β̃(q)) + g(q, α̃(q))]dq

+

∫ b

a
K2(p, q)[f(q, α̃(q)) + g(q, β̃(q))]dq + h(p).

Theorem 33. Consider the integral equation (28) with K1,K2 ∈ C(I × I,R),
f, g ∈ C(I × R,R) and h ∈ C(I, R). Suppose there exists a coupled lower-upper

solution (α̃, β̃) of (28) with α̃ ≤ β̃ and that Assumption 31 is satisfied. Then the

integral equation (28) has a solution in C(I, R).

Proof. Consider X = C(I, R), the natural partial order relation, that is, for x,

y ∈ C(I, R),

x ≼ y ⇐⇒ x(p) ≤ y(p), ∀p ∈ I.

It is obvious that X is a complete metric space with respect to the sup metric

d(x, y) = sup
p∈I

|x(p)− y(p)| .

Now define on X ×X the following partial order: for (x, y), (u, v) ∈ X ×X,

(x, y) ≼ (u, v) ⇐⇒ x(p) ≤ u(p) and y(p) ≥ v(p), for all p ∈ I.

Obviously, for any (x, y) ∈ X × X, the functions max{x, y} and min{x, y} are

the upper and lower bounds of x and y respectively. Therefore for every (x, y), (u,

v) ∈ X ×X, there exists the element (max{x, u}, min{y, v}) which is comparable

to (x, y) and (u, v). Define α : X2 ×X2 → (0, +∞) as follows

α((x, y), (u, v)) =

{
1, if x ≥ y, u ≥ v,

0, otherwise,

and ψ : [0, +∞) → [0, +∞) as follows

ψ(t) =
t

2
for all t > 0.

Now define the mapping F : X ×X → X by

F (x, y)(p) =

∫ b

a
K1(p, q) [f(q, x(q)) + g(q, y(q))] dq

+

∫ b

a
K2(p, q) [f(q, y(q)) + g(q, x(q))] dq + h(p),
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for all p ∈ I. It is easy to prove, like in [11], that F is increasing. Now for x, y, u,

v ∈ X with x ≽ u and y ≼ v, we have

F (x, y)(p)− F (u, v)(p)

=

∫ b

a
K1(p, q) [f(q, x(q)) + g(q, y(q))] dq

+

∫ b

a
K2(p, q) [f(q, y(q)) + g(q, x(q))] dq

−
∫ b

a
K1(p, q) [f(q, u(q)) + g(q, v(q))] dq

−
∫ b

a
K2(p, q) [f(q, v(q)) + g(q, u(q))] dq

=

∫ b

a
K1(p, q) [(f(q, x(q))− f(q, u(q)))− (g(q, v(q))− g(q, y(q)))] dq

−
∫ b

a
K2(p, q) [(f(q, v(q))− f(q, y(q)))− (g(q, x(q))− g(q, u(q)))] dq.

Thus, by using (29) and (30), we get

F (x, y)(p)− F (u, v)(p)(32)

≤
∫ b

a
K1(p, q) [λθ (x(q)− u(q)) + µθ (v(q)− y(q))] dq

−
∫ b

a
K2(p, q) [λθ (v(q)− y(q)) + µθ (x(q)− u(q))] dq.

Since θ is non-decreasing and x ≽ u and y ≼ v, we have

θ (x(q)− u(q)) ≤ θ

(
sup
p∈I

|x(q)− u(q)|

)
= θ(d(x, u)),

θ (v(q)− y(q)) ≤ θ

(
sup
p∈I

|v(q)− y(q)|

)
= θ(d(y, v)).

Hence by (32), in fact that K2(p, q) ≤ 0, we obtain

|F (x, y)(p)− F (u, v)(p)|

≤
∫ b

a
K1(p, q) [λθ(d(x, u)) + µθ(d(y, v))] dq

−
∫ b

a
K2(p, q) [λθ(d(y, v)) + µθ(d(x, u))] dq,
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≤
∫ b

a
K1(p, q) [max{λ, µ}θ(d(x, u)) + max{λ, µ}θ(d(y, v))] dq

−
∫ b

a
K2(p, q) [max{λ, µ}θ(d(y, v)) + max{λ, µ}θ(d(x, u))] dq,

since all the quantities on the right hand side of (32) are non-negative. Now, taking

supremum with respect to t, by using (31), we get

d(F (x, y), F (u, v))

≤ max{λ, µ} sup
p∈I

∫ b

a
(K1(p, q)−K2(p, q)) dq. [θ(d(x, u)) + θ(d(y, v))]

≤ θ(d(x, u)) + θ(d(y, v))

8
.

Thus

(33) d(F (x, y), F (u, v)) ≤ θ(d(x, u)) + θ(d(y, v))

8
.

Now, since θ is non-decreasing, we have

θ(d(x, u)) ≤ θ (d(x, u) + d(y, v)) ,

θ(d(y, v)) ≤ θ (d(x, u) + d(y, v)) ,

which implies, by (iiθ), that

θ(d(x, u)) + θ(d(y, v))

2
≤ θ (d(x, u) + d(y, v))

≤ d(x, u) + d(y, v).

Hence

(34)
θ(d(x, u)) + θ(d(y, v))

8
≤ d(x, u) + d(y, v)

4
.

Thus by (33) and (34), we have

α((x, y), (u, v))d(F (x, y), F (u, v))

≤ d(F (x, y), F (u, v))

≤ d(x, u) + d(y, v)

4

≤ 1

2

(
d(x, u) + d(y, v)

2

)
≤ ψ

(
d(x, u) + d(y, v)

2

)
,

which is the contractive condition of Corollary 28. Now, let (α̃, β̃) ∈ X × X be a

coupled upper-lower solution of (28), then we have α̃(p) ≤ F (α̃, β̃)(p) and β̃(p) ≥
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F (β̃, α̃)(p), for all p ∈ I, which shows that all the hypothesis of Corollary 28 are

satisfied. This proves that F has a coupled fixed point (x, y) ∈ X ×X which is the

solution in X = C(I, R) of the integral equation (28). �
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