• 제목/요약/키워드: compass

검색결과 382건 처리시간 0.021초

센서융합에 의한 이동로봇의 주행성 연구 (A Study In Movement of Wheeled Mobile Robot Via Sensor Fusion)

  • 신회석;홍석교;좌동경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.584-586
    • /
    • 2005
  • In this paper, low cost inertial sensor and compass were used instead of encoder for localization of mobile robot. Movements by encoder, movements by inertial sensor and movements by complementary filter with inertial sensor and compass were analyzed. Movement by complementary filter was worse than by only inertial sensor because of imperfection of compass. For the complementary filter to show best movements, compass need to be compensated for position error.

  • PDF

Dual compasses를 이용한 스프레더의 자세 제어 (Spreader Pose Control Using Dual-electric Compasses)

  • 한순신;정희석;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.861-867
    • /
    • 2007
  • A spreader pose control system using dual-electric compasses has been implemented by measuring the skew angle of the spreader with dual-electric compasses. In the conventional spreader pose measurement, CCD cameras, laser sensors or tilt sensors are mostly used. However those sensors are not only sensitive to the weather and disturbances but also expensive to build the system. To overcome the shortcomings, an inexpensive and efficient system to control the spreader pose has been implemented using the dual-magnetic compasses. Since the spreader iron-structures are noise sources to the magnetic compass, it is not considered to use the magnetic compass to measure the orientation of the spreader. An algorithm to eliminate the interferences of metal structures to the dual compasses has been developed in this paper. The 10:1 reduction model of a spreader control system is implemented and the control performance is demonstrated to show the effectiveness of the dual-magnetic compasses proposed in this research.

Dual compasses를 이용한 스프레더의 자세 제어 (Spreader Pose Control Using Dual-electric Compasses)

  • 한순신;정희석;이장명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.366-368
    • /
    • 2007
  • A spreader pose control system using dual-electric compasses has been implemented by measuring the skew angle of the spreader with dual-electric compasses. In the conventional spreader pose measurement, CCD cameras, laser sensors or tilt sensors are mostly used. However those sensors are not only sensitive to the weather and disturbances but also expensive to build the system. To overcome the shortcomings, an inexpensive and efficient system to control the spreader pose has been implemented using the dual-magnetic compasses. Since the spreader iron-structures are noise sources to the magnetic compass, it is not considered to use the magnetic compass to measure the orientation of the spreader. An algorithm to eliminate the interferences of metal structures to the dual compasses has been developed in this paper. The 10:1 reduction model of a spreader control system is implemented and the control performance is demonstrated to show the effectiveness of the dual-magnetic compasses proposed in this research.

  • PDF

마그네틱 콤파스 기반의 전 방향 로봇의 방위각 제어 (Azimuth Tracking Control of an Omni-Directional Mobile Robot(ODMR) Using a Magnetic Compass)

  • 이정형;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.132-138
    • /
    • 2009
  • In this paper, control of an omni-directional mobile robot is presented. Relying on encoder measurements to define the azimuth angle yields the dead-reckoned situation which the robot fails in localization. The azimuth angle error due to dead-reckoning is compensated and corrected by the magnetic compass sensor. Noise from the magnetic compass sensor has been filtered out. Kinematics and dynamics of the omni-directional mobile robot are derived based on the global coordinates and used for simulation studies. Experimental studies are also conducted to show the correction by the magnetic compass sensor.

중력 법칙을 이용한 전자나침반의 경사오차 및 비 수평오차 보정 (Inclination and Non-horizontal Error Correction of Magnetic Compass by the Law of Gravity)

  • 박계도;이장명
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.606-611
    • /
    • 2011
  • This paper proposes a correction method concerning the inclination error and non-horizontal error of magnetic compass when magnetic compass is vibrated. This system used the 2-axis variable resistance and pendulum. A pendulum hanging from the 2-axis variable resistance of this system is always maintain the horizontal because of gravity. but these data had some intrinsic error. So we used the low pass filter to solve this problem. So this system can get the accurate azimuth of magnetic compass. In conclusion, These results demonstrate convincingly by applied algorithm of experiment.

디지털 전자콤파스에 대한 연구 (A Study the Digital Electronic Compass)

  • 윤재준;최조천
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.245-251
    • /
    • 2005
  • 선박의 자동조타기에는 반드시 방위정보가 필요하며, 방위정보를 제공하는 장비로는 자이로콤파스, 지자기 콤파스 및 GPS 콤파스가 있다. 자이로콤파스는 안정된 동작을 하지만 고가형이므로 주로 대형선박에서 사용되고 있으며, 중소형 선박에서는 저가형의 지자기콤파스 및 GPS 콤파스가 사용되고 있다. 본 연구에서는 지자기콤파스와 GPS 콤파스에서 각각의 단점을 보완하는 방식으로 안정된 방위정보를 제공하는 병행알고리즘의 전자콤파스를 구현하였다.

  • PDF

지자기 센서와 무선통신을 이용한 PMS의 스마트폰 인터페이스 구현 (Implementation of a Smartphone Interface for a Personal Mobility System Using a Magnetic Compass Sensor and Wireless Communication)

  • 김연균;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.48-56
    • /
    • 2015
  • 본 논문에서는 지자기센서와 스마트폰을 사용하여 개인이동시스템(PMS)을 구현한다. 지자기센서를 사용한 PMS 제어 시스템은 탑승자가 원하는 방향으로 스마트폰을 향하게 하면 PMS는 탑승자가 원하는 방향으로 이동한다. 본 논문에서 제안한 스마트폰 제어 PMS는 지자기센서를 사용함으로써 버튼 조작에 의한 제어보다 더 직관적으로 PMS를 제어하므로 사용자에게 더욱 편리한 인터페이스를 제공한다. 그리고, PMS에 장착된 모터의 기계적 특성을 보정하기 위하여 지자기센서가 사용되었다. 또한, 본 논문은 지자기센서 기반의 PMS의 제어방법으로 절대방향과 상대방향 제어방법을 제안한다. 실험 결과로서 제안된 두 가지 방법으로 지자기센서 기반의 PMS가 편리하고 효과적으로 제어되었다.

GPS와 듀얼 전자 컴파스를 이용한 차량의 혼합항법시스템 (Hybrid Car Navigation System using GPS and Dual Electric Compass)

  • 김양환;최병석;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.106-112
    • /
    • 2006
  • A new model for the continuous-magnetic interferences has been proposed in this paper to remove external interferes of magnetic field to the dual electric compass. By this removal, the dual electric compass can be used for proving the azimuth angle in an automobile navigation system instead of the rate gyroscope. In the navigation system with a GPS receiver, a DR sensor such as a rate gyroscope is needed to overcome the shielded areas, which is relatively expensive and requires frequent calibrations. However the dual electric compass designed by this research is cheap and provides absolute azimuth angle precisely, which is beneficiary to be used as a DR sensor. The main contribution of this paper is that the long-lasting magnetic interferences have been removed out by using the proposed model, which never be studied before. With a hybrid navigation system using a DR sensor, we demonstrated that dual electric compass is better than a rate gyroscope in terms of both economics and performances.

IR 센서 및 Compass 센서를 이용한 생체 모방형 수중 로봇의 장애물 인식 및 회피 (Obstacle Recognition and Avoidance of the Bio-mimetic Underwater Robot using IR and Compass Senso)

  • 이동혁;김현우;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권10호
    • /
    • pp.928-933
    • /
    • 2012
  • In this paper, the IR and compass sensors for the underwater system were used. The walls of the water tank have been recognized and avoided treating the walls as obstacles by the bio-mimetic underwater robot. This paper is consists of two parts: 1.The hardware part for the IR and compass sensors and 2.The software part for obstacle avoidance algorithm while the bio-mimetic robot is swimming with the obstacle recognition. Firstly, the hardware part controls through the RS-485 communications between a microcontroller and the bio-mimetic underwater robot. The software part is simulated for obstacle recognition and collision avoidance based upon the data from IR and compass sensors. Actually, the bio-mimetic underwater robot recognizes where is the obstacle as well as where is the bio-mimetic robot itself while it is moving in the water. While the underwater robot is moving at a constant speed recognizing the wall of water tank as an obstacle, an obstacle avoidance algorithm is applied for the wall following swimming based upon the IR and compass sensor data. As the results of this research, it is concluded that the bio-mimetic underwater robot can follow the wall of the water tank efficiently, while it is avoiding collision to the wall.

원격지시식 자기 compass 에 관한 연구(I) (The Research for Remote-indicating Magnetic Compass(I))

  • 이상집;임정빈
    • 한국항해학회지
    • /
    • 제10권1호
    • /
    • pp.81-100
    • /
    • 1986
  • Self-contained portable remote-indicating magnetic compass was designed and tested. Its sensing part consists of main scale disk of rotary encoder with photo-etched 180, oopaque slits and three pairs of light sources and detectors seperated by a transparent index scale, so that any angular deflection of main scale disk against the bowl may be detected optically. The outputs from the sensing part are transformed into digital ship's course indication by electronics unit which consists of operational amplifier, phase discriminator, up-down counter and counting starter circuit. The results from testign the above compass with turntable at variable rate of turn are as following : 1) The main scale disk deflection against the bowl can be detected without any disturbing influence to the freedom of its north-seeking function. 2) The digital indication resolution is found to be $\circ \pm$1 degree. 3) Misrepresenting indication can be avoided by ensuring dimension uniformity and arrangement accuracy of slits on main and index scale disks and by centering pivot in the encoder disk. 4) Indication resolution should be improved by modifying the signal processing and by doubling the number of slits on compass card. 5) Further study should be made on developing non-conductive compass liquid, analogue repeater driving system and more compact processing element.

  • PDF