• Title/Summary/Keyword: compartment Fire

Search Result 213, Processing Time 0.024 seconds

Simulating the Response of a 10-Storey Steel-Framed Building under Spreading Multi-Compartment Fires

  • Jiang, Jian;Zhang, Chao
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.389-396
    • /
    • 2018
  • This paper presents a numerical investigation on the structural response of a multi-story building subjected to spreading multi-compartment fires. A recently proposed simple fire model has been used to simulate two spreading multi-compartment fire scenarios in a 10-story steel-framed office building. By assuming simple temperature rising and distribution profiles in the fire exposed structural components (steel beams, steel column and concrete slabs), finite element simulations using a three-dimensional structural model has been carried out to study the failure behavior of the whole structure in two multi-compartment fire conditions and also in a standard fire condition. The structure survived the standard fire but failed in the multi-compartment fire. Whilst more accurate fire models and heat transfer models are needed to better predict the behaviors of structures in realistic fires, the current study based on very simple models has demonstrated the importance and necessity of considering spreadingmulti-compartment fires in fire resistance design of multi-story buildings.

Similarity of energy balance in mechanically ventilated compartment fires: An insight into the conditions for reduced-scale fire experiments

  • Suto, Hitoshi;Matsuyama, Ken;Hattori, Yasuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2898-2914
    • /
    • 2022
  • When evaluating energy balance and temperature in reduced-scale fire experiments, which are conducted as an alternative to full-scale fire experiments, it is important to consider the similarity in the scale among these experiments. In this paper, a method considering the similarity of energy balance is proposed for setting the conditions for reduced-scale experiments of mechanically ventilated compartment fires. A small-scale fire experiment consisting of various cases with different compartment geometries (aspect ratios between 0.2 and 4.7) and heights of vents and fire sources was conducted under mechanical ventilation, and the energy balance in the quasi-steady state was evaluated. The results indicate the following: (1) although the compartment geometry varies the energy balance in a mechanically ventilated compartment, the variation in the energy balance can be evaluated irrespective of the compartment size and geometry by considering scaling factor F (∝heffAwRT, where heff is the effective heat transfer coefficient, Aw is the total wall area, and RT is the ratio of the spatial mean gas temperature to the exhaust temperature); (2) the value of RT, which is a part of F, reflects the effects of the compartment geometry and corresponds to the distributions of the gas temperature and wall heat loss.

A Numerical Study on the Effect of Volume Change in a Closed Compartment on Maximum Heat Release Rate (밀폐된 구획실의 체적변화가 최대 열발생률에 미치는 영향에 관한 수치해석 연구)

  • Yun, Hong-Seok;Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.19-27
    • /
    • 2017
  • The effects of changes in area and location of fire source, fire growth rate, and volume of compartment on the major fire characteristics, including heat release rate, in closed compartment fires were examined. To this end, a fire simulation using Fire Dynamics Simulator (FDS) was performed for ISO 9705 room with a closed opening. As main result, it was found that the changes in the area and location of fire source did not significantly affect the thermal and chemical characteristics inside the compartment, such as maximum heat release rate, total heat release, maximum temperature at upper layeras well as species concentrations. However, increasinthe fire growth rate and volume of compartment resulted in increase of the maximum heat release rate and total heat release, decrease in the limiting oxygen concentration and increase in the maximum CO concentration. Finally, a methodology for the application of fire growth curves to closed compartment fires was proposed by deriving the correlation of the maximum heat release rate expressed as a function of the fire growth rate and the volume ratio of compartment based on the ISO 9705 room.

A Study on the Performance and the Improving Methods of the Building Fire Compartment under the Domestic Fire Safety Regulations (국내 방화규정에 따른 건축물 방화구획 성능 및 개선방안에 관한 연구)

  • Chun, Woo-Young;Lee, Kwang-Won;Lee, Ji-Hee;Kim, Wha-Jung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.19-24
    • /
    • 2008
  • Recently, the buildings have gradually become higher, more massive and more complex with high growth of economy and varieties of the patterns of people's living. Therefore we study a performance and Improving Methods of the fire compartment as a measure to minimize the damage of the people and property from the fire. Currently, under the economic crisis situation, we do not consider about prevention of disaster safety enough; safety investment evasion, safety carelessness, and management relaxation etc. Also in the aspect of regulation system, industrial technology and plan engineering, Korean techniques of preventing fire disasters are far behind of other advanced nations. At this point, we are in need of improving about it. When considering like this situation, we need more studies on the practical improvement in order to assure fire prevention for buildings. The fire compartment prevent from magnifying the fire to the wide area by compartment into specific area. From this, it is possible to minimize fire damage and property and secure emergency exit for life safety. This fire compartment has primary function to extinguish fire easily, and the openings and penetrations are important passage which makes the smoke and fire go away from the fire area to the contiguous space. This study suggests improving methods of domestic fire compartment efficiency standard through comparative analysis of overseas advanced provision and domestic provision about base element of the building fire prevention.

  • PDF

On the Fire Behavior Due to the Ventilation Condition in the Fire Compartment (환기 조건에 따른 화재거동 연구)

  • Kim, Sung-Chan;Hamins, Anthony
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.367-373
    • /
    • 2008
  • A series of fire experiments has been conducted to provide an improved understanding of the fire structure of under-ventilated compartment fires. A comprehensive and quantitative assessment of gaseous species from the fire was made in the upper layer of fire in a 40 % reduced scale ISO 9705 fire compartment. The global equivalence ratio (GER) concept was used to characterize the fire behavior for various fire sizes, fuel types and ventilation conditions. The oxygen concentration in the upper layer reached to zero near the global equivalence ratio of $0.4{\sim}0.6$ while the carbon monoxide concentration increases with increasing the global equivalence ratio. Classification parameters of ISO19706 were also compared with the reduced scale experimental data for under ventilation fire.

A Numerical Study of Fire Dynamics of The Enclosed Compartment with Window Glass Breaking (밀폐된 구획의 창유리 파단시 화재 특성에 관한 수치적 연구)

  • 전흥균;최영상
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.29-42
    • /
    • 1998
  • The use of computer supported fire safety engineering calculations has grown significantly in recent years and will be increased rapidly. In this study, in order to examine for fire dynamics of the enclosed compartment with window glass(3mm, 4mm thickness) when the window glass breaks, we conducted numerical computer simulations about foam sofa fire with the zone type computer mode, FASTLite package(version 1.1.2) and the Berkeley algorithm for breaking window glass in a compartment fire, BREAK1 program (version 1.0). The analysis of the results in this paper shows that there are differences of fire dynamics between open-or enclosed-state compartment fire and the enclosed compartment fire with window glass breaking. It is also shown in this study that backdraft phenomenum occurs due to accumulated unburned combustible fuel when the glass of 4mm thickness breaks, and that temperature differences between the inner-and outer-surfaces of 3mm and 4mm thick glasses are appreciable. This study will help fire fighter to establish fire suppression or occupant's refuge strategies and fire safety engineer to enhance simulation techniques about the five dynamics of compartment fire.

  • PDF

RISK EVALUATION OF CARBON MONOXIDE IN COMPARTMENT FIRE

  • Kim, Kwang Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.66-76
    • /
    • 1997
  • In order to investigate the generation of carbon monoxide and heat loss of incomplete combustion in compartment fires, an experiment was conducted in a small scale compartment by using methanol as a fuel. The concentration of carbon monoxide and the toxicity parameter showed high values when the mass air - to - fuel stoichiometric ratio is under 1.0. The constitution of the combustion gas was showed to estimate it from the . The heat loss due to incompleteness of combustion is about one third of heat of combustion in case of under 1.0.

  • PDF

Experimental Study on the Effect of a Metal Storage Cask and Openings on Flame Temperature in a Compartment Fire

  • Bang, Kyoung-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.395-405
    • /
    • 2020
  • Compartment fire tests were performed using kerosene and Jet A-1 as fire sources to evaluate the relationship between flame temperature and opening size. The tests were performed for a fire caused by the release of kerosene owing to vehicle impact, and for a fire caused by the release of Jet-A-1 owing to airplane collision. The compartment fire tests were performed using a 1/3-scale model of a metal storage cask when the flame temperature was deemed to be the highest. We found the combustion time of Jet-A-1 to be shorter than that of kerosene, and consequently, the flame temperature of Jet-A-1 was measured to be higher than that of kerosene. When the opening was installed on the compartment roof, even though the area of the opening was small, the ventilation factor was large, resulting in a high flame temperature and long combustion. Therefore, the position of the opening is a crucial factor that affects the flame temperature. When the metal storage cask was stored in the compartment, the flame temperature decreased proportionally with the energy that the metal storage cask received from the flame.

Numerical Analysis Methods for Heat Flow in Fire Compartment (화재실의 열유동 해석을 위한 수치 해석 방법)

  • Kim, Gwang-Seon;Son, Bong-Se
    • Fire Protection Technology
    • /
    • s.16
    • /
    • pp.20-23
    • /
    • 1994
  • This article investigates the different numerical methods, which are widely used for purpose of simulating a fire compartment the particular numerical methods such as finite difference, finite element, control Volume, and finite analysis are discribed in order to understand basic concepts and their applications. The fire simulations using fferent methods for the different physical geometrics have been reported in many recent literatures The convergence rate, the accuracy, and the stability are no simply dependent upon the specific method, The study of popular nu-merical methods by being compared among those is therefore significant to understand the nu-merical simulation of fire compartment.

  • PDF

Study on Characteristics of Heat Release Rate in Compartment of Building for Scenario of Smoke Management (건축물 제배연시나리오 작성을 위한 구획실 발열특성 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.398-403
    • /
    • 2009
  • The theoretical bases on characteristics of heat release rate in compartment of building for scenario of smoke management are introduced and the numerical applications to simple compartment model are carried out. The growth stage which is important for smoke management design is modelled as t-squared fire curve including fire growth coefficient with related to growth rate. The conditions for the happening of flashover is presented such as $600^{\circ}C$ of temperature or $20kW/m^2$ of radiation heat flux. After the flashover happen, the fire in compartment changes to fully developed fire having the characteristics of ventilation-controlled fire. As the result of numerical analysis to simple compartment model, the time to reach 900K under ceiling for condition of medium growth is twice for condition of fast growth.

  • PDF