• Title/Summary/Keyword: compaction piles

Search Result 81, Processing Time 0.027 seconds

A Study on Production and Physical Properties of Prestressed Concrete Piles(I)-Effect of Factors on the Centrifugal Compaction of Concrte Piles (프리스트레스트 콘크리트 파일의 제조와 물성에 관한 연구(I) -콘크리트 파일의 원심 성형에 미치는 각 요인의 영향)

  • Jaung, Jae-Dong;Kim, Won-Ki;Jeong, Yong;Kim, Jin-Chul;Yoo, Taec-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.228-233
    • /
    • 1992
  • The objective of this report is to investigate the effect of factors on the centrifugal compaction of concrete piles with design of experiments. The analysis of sludge and measurement of compressive strength of specimens compacted by centrifugal of vibration were performed. As a result, there were some effective factors like unit content of cement, high and middle centrifugal force and time. It was considered that the process of centrifugal compaction of concrete piles could be optimized with these results.

  • PDF

Analysis of Load-Settlement Behaviour Characteristics of Granular Compaction Piles from the Model Tests (모형실험에 의한 조립토 다짐말뚝의 하중-침하 관련 거동특성 분석)

  • Kim, Hong-Taek;Kang, Yun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.33-45
    • /
    • 2004
  • In the present study, more systematic laboratory model tests under various conditions are carried out to investigate load-sharing characteristics among the granular pile and adjacent soils and bearing capacity characteristics with different pile lengths. Further to evaluate effects of both a loading area and a spacing of pile installation on the bearing capacity and bearing capacity characteristics of each pile in group, model test results are also analyzed for the purpose of an efficient design of granular compaction piles. From the analysis of the model test results, it is found that the ultimate capacity of granular compaction group piles increases with a decrease in the installation distance among granular piles. It is also found that the dominant failure mode of the granular compaction piles is bulging failure. It is further realized that the length of a granular pile could not significantly affect on the ultimate granular pile capacity.

  • PDF

A Study on the Stress Concentration of Crushed-stone Compaction Piles through Field Loading Test (현장재하시험을 통한 쇄석다짐말뚝의 응력분담에 관한 연구)

  • 이민희;최용규;임종철;황근배
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.107-114
    • /
    • 2003
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, the necessity of an alternative method is suggested. In this study, the static load tests for crushed-stone compaction piles which were constructed on test field were performed. Based on test results, stress concentration ratios between the crushed-stone compaction pile and the soft ground were investigated and estimated. At loading pressure, settlement showed decreasing tendency as replacement rate increases. At replacement rate of 20%, yield pressure was smaller but, at replacement rates of 30% and 40%, settlement and yield pressure were similar. The stress concentration ratio was within the range of 1.7 to 3.0 and it was higher as replacement rate increased.

Experimental Study of Clays Mixed into Compaction Piles (다짐말뚝으로의 점토혼입현상에 관한 실험적 연구)

  • You, Seung-Kyong;Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.41-46
    • /
    • 2009
  • In this paper, a series of laboratory chamber tests were performed to evaluate the effects of clays mixed into compaction piles due to confining stress of ground on consolidation promoting. For the tests, various compaction piles such as SCP, GCP, and RAPP (Recycled-Aggregate Porous concrete Pile) were used. The ground condition was simulated at 50% and 100% of degree of consolidation. Also, confining stresses were applied to the composite ground corresponding to those of 5m depth. The amount of mixed clays into each compaction pile were estimated by measuring the drainage from the saturated compaction piles. From the test result, it was shown that the drainage area of compaction pile was changing according to the consolidation condition. GCP showed the most change of drainage area as it has relatively large void ratio; however, the amount of change was decreased by progressing consolidation of ground.

  • PDF

A Study on Effect of Ground Improvement by Sand Compaction Pile Changing Replacement Width (모래다짐말뚝 개량폭에 따른 보강효과에 관한 연구)

  • Kim, Si-Woon;Jung, Gil-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.67-73
    • /
    • 2005
  • In this research, centrifuge model experiments and numerical approach of finite element method to analyze experimental results were performed to investigate the behavior of improved ground with sand compaction piles. One of typical clay minerals, kaolinite powder, were prepared for soft ground in model tests. Jumunjin standard sand was used to sand compaction pile installed in the soft soil. In order to investigate the characteristics of mechanical behavior of sand compaction piles with low replacement ratios, centrifuge model experiments with the replacement ratio of 40%, changing the width of improved area with respect to testing results the width of surcharge loads, were carried out to obtain of bearing capacity, characteristics of load-settlement, vertical stresses acting on the sand pile and the soft soil failure mechanism in improved ground.

  • PDF

Evaluation of the Resistance Bias Factors to Develop LRFD for Gravel Compaction Piles (LRFD 설계를 위한 쇄석다짐말뚝공법의 저항편향계수 산정)

  • Han, Yong-Bae;Park, Joon-Mo;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.43-55
    • /
    • 2012
  • In this study, the resistance bias factors are calculated to determine the resistance factor of Gravel Compaction Piles which is one of the soft ground improvement methods. In order to calculate resistance bias factors for gravel compaction piles, two ultimate bearing capacities were analyzed. One is the ultimate bearing capacity in 2.54 cm settlement measured using data of the field loading test on 41 piles and the other is the ultimate bearing capacity calculated using the seven equations concerning bulging failure. The results of analysis show that the probability density function of the calculated ultimate bearing capacities has a lognormal distribution. Resistance bias factor and the coefficient of variation for Greenwood equation are 0.91 and 0.38, respectively, and for those of Hughes & Withers are 1.19 and 0.39. The two equations are suitable for calculating resistance factors for LRFD of soil improvement using gravel compaction piles.

Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio (저치환율 모래다짐말뚝에 의한 복합지반의 응력분담거동에 대한 실험적 연구)

  • 유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.253-261
    • /
    • 2003
  • Mechanical behavior of composition pound improved by sand compaction pile (SCP) with low replacement area ratio could be more significantly affected by mechanical interaction between sand piles and clays than that of clay ground improved by SD or SCP with high replacement area ratio. It is essential to elucidate the mechanical interaction in the improved clay ground, in order to accurately estimate behavior in reducing settlement of the improved ground and increasing strength of clays. In this paper, through a series of model tests of composition ground improved by SCP with low replacement area ratio, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing behavior between sand piles and clays.

Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay

  • Kwon, Jeonggeun;Kim, Changyoung;Im, Jong-Chul;Yoo, Jae-won
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-185
    • /
    • 2018
  • Sand Compaction Piles (SCPs) are constructed by feeding and compacting sand into soft clay ground. Sand piles have been installed with irregular cross-sectional shapes, and mixtures of both sand and clay, which violate the design requirement of circular shape according to the replacement area ratio due to various factors, including side flow pressure. Therefore, design assumptions cannot be satisfied according to the conditions of the ground and construction and the replacement area ratio. Two case histories were collected, examined, and interpreted in order to study the effect of the shape of SCPs. The effects of the distortion of SCP shape and the mixture of sand and clay were studied with the results of large direct shear tests. The design internal friction angle was secured with the irregular cross-sectional sand piles regardless of the replacement area ratio. The design internal friction angle was secured regardless of mixed condition when the mixture of sand and clay was higher than the replacement area ratio of 65%. Therefore, systematic construction management is recommended with a replacement area ratio below 65%.

A Field Test Study on stress concentration ratio of Crushed-Stone Column Pile (쇄석다짐말뚝의 응력분담비에 관한 현장실험 연구)

  • Lee, Min-Hee;Im, Jong-Chul;Hwang, Geun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.525-532
    • /
    • 2004
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, a necessity of an alternative method is suggested. In this study, the static load tests for crushed-stone compaction piles which were constructed on test field were performed. Based on test results, stress concentration ratios between the crushed-stone compaction pile and the soft ground were investigated and estimated. The stress concentration ratio was the range of 1.7 to 3.0 and the higher it was the more replacement rate was increased.

  • PDF

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.