• Title/Summary/Keyword: compaction pile

Search Result 185, Processing Time 0.025 seconds

Analysis of Ground Improvement Effect of Low Vibration Sand Compaction Pile Method (저진동 모래다짐말뚝(LVSCP)의 지반개량효과 분석)

  • Kim, Jong-Kook;Cha, Jun-Tae;Lee, Jae-Chang;Chae, Young-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1234-1242
    • /
    • 2010
  • In this study, the effect of noise and vibration, and influence of ground improvement are evaluated and its application is analyzed through the example of SCP designed at ground improvement in Song-Do international city. consequently, it showes even comfortable result that it is about 5.0m of inner space, when the LVSCP method is applied, rather than that it is about 30m of inner space when the existing SCP is applied in vibration control standards 2.0mm/sec. In the noise, now that the many differences according to environmental factors like other equipment noise, limited space and so on at the time of the construction by LVSCP method are coming out, so we think that appro itate measures are needed according to surroundings. By the way, when it comes to the estimation of the ground improvement work before and after an improvement of LVSCP method, its result shows that it is satisfacttion to all the standards of compaction control in dregded and reclaimed ground and sedimentary clay layer.

  • PDF

Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio (저치환율 모래다짐말뚝에 의한 복합지반의 응력분담거동에 대한 실험적 연구)

  • 유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.253-261
    • /
    • 2003
  • Mechanical behavior of composition pound improved by sand compaction pile (SCP) with low replacement area ratio could be more significantly affected by mechanical interaction between sand piles and clays than that of clay ground improved by SD or SCP with high replacement area ratio. It is essential to elucidate the mechanical interaction in the improved clay ground, in order to accurately estimate behavior in reducing settlement of the improved ground and increasing strength of clays. In this paper, through a series of model tests of composition ground improved by SCP with low replacement area ratio, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing behavior between sand piles and clays.

Study on Lond Transfer Characteristics of Sand Compaction Piles in Soft Soil Deposits (연약지반의 모래다짐말뚝에 대한 하중전이 연구)

  • Kim Jaekwon;Kim Soo-Il;Jung Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.183-196
    • /
    • 2004
  • Sand Compaction Pile (SCP) is a soft-ground improvement technique used for not only accelerating consolidation but also increasing bearing capacity of soils. In this study, laboratory tests and 3-D finite element analysis were peformed to investigate the characteristics of load transfer in SCP with an emphasis on free-strain behavior of piles with low replacement ratios in the range of 30 to $50\%$. Through these focused tests and numerical analyses, we proposed a simplified method to analyze the load transfer characteristics of SCP in soft ground. Moreover, it was shown that estimated normal stresses in SCP using the proposed method were in a reasonable agreement with actual values.

부산신항 사석층 침하를 고려한 안벽기초의 침하량 분석

  • Gang, Yeon-Ik;Jeong, Jong-Beom;Yang, Sang-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.176-178
    • /
    • 2007
  • 부산신항 북컨테이너터미널 민차부두 1단계 공사에 적용된 안벽기초는 하부 대섬도 연약점토층 개량을 위한 SCP(Sand Compaction Pile) 개량층과 그 상부에 약 6m정도의 사석층으로 구성되어 있다. 안벽은 케이슨식으로 상부의 크레인 풍의 공용하중 작용시에 발생이 예상되는 안벽기초의 과도한 지반침하 방지를 위해 근고블럭에 의한 Preloading 공법이 적용되었다. 따라서, 프리로딩에 의한 하부기초지반의 침하관리가 중요 공사관리 포인트가 된다. 그러나, SCP층이나 사석총에 대한 침하량 예측은 반경험적 방법에 의존하기 때문에 실제와 상당한 차이가 발생하게 된다 본 연구에서는 사석층의 진동다짐에 의한 시공 특성을 반영하기 위해 굴착치환구간의 사석층에 대한 실측값을 이용하여 Terzaghi 변형식의 침하계수 a를 재산정하여 SCP개량구간에 적용함으로써 보다 합리적인 안벽기초의 침하량을 분석하였고 이를 사석층의 여성고 산정에 이용하였다.

  • PDF

Drainage Characteristics of Copper Slag Compaction Pile Installed in Clay Based on the Laboratory Consolidation Model Test (대형압밀시험기를 이용한 동슬래그 다짐말뚝의 배수 특성)

  • 천병식;정헌철;김경민;조한영
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.552-557
    • /
    • 2001
  • Copper slag is the by-producted material on the proceeding of refining the copper. To verify applications of copper slag to vertical drain material can substitute for the sands in ground improvement, laboratory soil tests and consolidation model tests were conducted. The results of consolidation model test was analyzed as the hyperbolic method. The hyperbolic method assumes that the settlement(s) versus time(t) behavior approaches a straight line describes a hyperbolic reaction. The inverse of the slope of the line would then yield the ultimate settlement. Through in this study, copper slag is compatible with vertical drain material as like sands. Copper slag compaction pile promote the consolidation settlement.

  • PDF

Evaluation of the Low Replacement Reinforced Ground Using Laboratory Tests (실내시험을 이용한 저치환 보강지반의 평가)

  • Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • SCP(Sand Compaction Pile) method that forms a composite ground by driving compacted sand piles into the soft ground. This method is one of the soil improvement techniques for reinforcing and strengthening soft ground deposits. This thesis describes the investigation on the behavior of soft ground reinforced with SCP by low improvement ratio. Direct shear test and consolidation test carried out to verified behavior of composite ground reinforced with SCP. Test results were discussed with reference to the amount of consolidation settlement, variation of shear resistance with area replacement ratio and effect of the stress concentration. And, laboratory model loading test carried out to verified the effect of the location and failure mode of reinforced embankment. Residual shear strength varies with the area replacement and constrict load in the low replacement ratio. Calculated stress concentration ratio overestimate than proposed valve by experimental, theoretical and analytical method. As regards the location, improving right below of the top of the slope was more effective than below of the toe of the slope. This thesis carried out to obtain fundamental information of behavior of the composit ground. Hereafter, centrifuge test that reproduce stress state of the in-situ must be necessary through the further study about pile penetration, reinforce position and construct time.

Behavior of Soft Ground Improved by CSCP and SCP Using Centrifuge Modeling (원심모델링을 이용한 CSCP 및 SCP로 개량된 연약지반의 거동)

  • Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2006
  • In this study, centrifuge model tests were performed to investigate the stress concentration ratio, bearing capacity and deformation modes of piles in clay ground improved by granular piles with two types of pile (CSCP, SCP) and various replacement ratios (0, 20, 40, 60%). According to the results of tests, the load ratio of ground improved by SCP and CSCP proportionally increased as replacement ratio increased. It shows that average normalized load of ground improved by CSCP is higher by about $8{\sim}21%$ than by SCP. As a result of rigid loading tests, it was evaluated that average stress concentration ratio of CSCP is higher than that of SCP. Only expansion failure occurred in CSCP, whereas SCP showed the expansion and shear failure simultaneously.

Reinforcement of the Structure Foundation using Grouting(C.G.S) (그라우팅(C.G.S)에 의한 구조물 기초 보강)

  • 천병식;김진춘;권형석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.1-11
    • /
    • 2000
  • The use of Compaction Grouting evolved in 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has been developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major applications of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other applications include preventing liquefation, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the Compaction Grouting. Also, the effectiveness of the ground improvement and the bearing capacity of the Compaction Pile has been verified by the Cone Penetration Test(CPT) and Load Test. Relatively uniform Compaction grouting column could be maintained by planning the Quality Control in the course of grouting. And, the Quality Control Plan has been conceived using grout pressure, volume of grout and drilling depth.

  • PDF

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF