• Title/Summary/Keyword: compaction pile

Search Result 185, Processing Time 0.024 seconds

Behavioral Characteristics of Improved Ground by Fully Penetrated and Partially Penetrated SCP according to Construction Stage (관통SCP와 미관통SCP로 개량된 지반의 시공단계별 거동 특성)

  • Park, Jongseo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.51-57
    • /
    • 2012
  • In this study, numerical analysis was carried out for both partially penetrated SCP(sand compaction pile) and fully penetrated SCP constructed into the ground. Midas GTS was used as a FEM analysis program, which is widely used in geotechnical engineering. For the analysis, ground displacement, effective stress and pore water pressure at the time both just after embankment on the ground and 365days later were compared and analyzed. As the results, the effect regarding partially penetrated SCP was similar to the effect regarding fully penetrated SCP under the bottom of the center of embankment when considering the safety towards shear failure.

Case Study for Lateral Displacement of Caisson installed on Deep Soft Soils (대심도 연약지반상에 건설되는 케이슨의 측방변형 사례 연구)

  • Kim, Myung-Hak;Yoon, Min-Seung;Lee, Sang-Wook;Lee, Chea-Kyun;Han, Byoung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.940-950
    • /
    • 2010
  • In case of uneven surcharge like backfill or embankment after constructing caisson applied on the deep soft marine deposits, lateral deformation of soft soils would happen due to plastic deformation of soil particles by increase of excess pore water pressure. Lateral deformation of soil will result in the caisson displacement which affects soft soil-caisson structure safety. Soft soil was improved by soil compaction pile method, and then gravity caisson was installed. Soil deformations were monitored and analyzed with step by step backfill and embankment behind the caisson. Amount and speed of lateral deformation after the installation of caissons were closely related with the time of backfill and embankment. The relationship between maximum lateral displacement($\Delta_y$) in front of caisson and settlement($\Delta_s$) can be expressed as $\Delta_y=(0.0871)\Delta_s+122.95$. Soft soil depth did not affect the lateral displacement of caisson in this study, which can be explained the soft soil improvement under the caisson by S.C.P. method. Substantially the amount and speed of the lateral deformation of caisson were closely related with the uneven surcharging rate behind caisson.

  • PDF

Characteristics of Crushed Oyster-shell as a Substitute of Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 재료로서 파쇄 굴패각의 특성조사)

  • 윤길림;윤여원;채광석;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.281-290
    • /
    • 2003
  • In order to investigate recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including permeability, confined compression and shear strength of crushed oyster shell were quantitatively examined in terms of fineness modulus and relative density of crushed oyster-shell. Experimental results show that the crushed oyster-shells are lighter than sand in weight, and have similar characteristics on permeability and shear strength to sandy soils. The oyster-shell can be considered as highly crushable material but not much crushable with existing high loads. Based on the laboratory test results, it is highly fudged that the crushed oyster-shell can be a substitute of sand as SCP materials.

A Study on the Geogrid Reinforced Stone Column System for Settlement Reduction Effect (침하저감효과를 위한 고강도 지오그리드 보강Stone Column 공법에 관한 연구)

  • Park, Si-Sam;Lee, Hoon-Hyun;Yoo, Chung-Sik;Lee, Dae-Young;Lee, Boo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.838-845
    • /
    • 2006
  • Recently construction work in Korea, demands of favorable condition ground had been increased with industrialization acceleration and economic growth. However, because of limited land space, it was so hard to ensure favorable condition grounds that construction work proceeds until soft ground area on plans of road, railroad and industrial complex. In this case, soft ground improvement was required such as a stone column method. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, evaluates the stone columns reinforced by geogrid for settlement reduction and wide range of application of stone columns. Triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate. Then, 3-dimensional numerical analysis were conducted for application of stone column reinforced by geogrid as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on reinforcing depth change of geogrid.

  • PDF

Estimation of reclaimed stone body by combined geophysical methods (정밀 물리탐사 병합기술에 의한 사석 투하량 조사)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.491-498
    • /
    • 2004
  • In recent years, as an effort to grasp the leading position in the field of maritime trading, new ports and container terminals arc now under construction. Old ports are extended. At the beginning, stones were thrown down to form stone embankments, that is stone-dams, in the outer and inner boundaries of the planned reclamation-land. S.C.P(Sand Compaction Pile) works are often needed to improve the stability of stone-dams, where marine sediments arc relatively thick. Here, interests are centered on the shape of stone body. In this, drilling work won't provide a sufficient resolution. In addition, the result corresponds to only one borehole point information. Thus, the aim of this paper is to introduce an affordable technology, that is, a combined geophysical method(seismic tomography + Televiewer) enables to get the whole information about stone-dam section. The measuring and evaluating procedure is described in detail with an emphasis on dealing with the use of seismic detonator, proper borehole deployment and integrated data analysis. Examples of field experiments at Busan new port are illustrated, which will prove the benefit of combined geophysical method.

  • PDF

Logging for a Stone Column Using Crosshole Seismic Testing (크로스홀 탄성파 시험을 이용한 쇄석다짐말뚝의 검측)

  • Kim, Hak-Sung;Park, Chul-Soo;Lee, Tae-Hee;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.84-90
    • /
    • 2009
  • An integrity testing for stone columns was attempted using crosshole S-wave logging. The method is conceptionally quite similar to the crosshole sonic logging (CSL) for drilled piers. The critical difference in the logging is the use of s-wave rather than p-wave, which is used in CSL, because s-wave is the only wave sensing the stiffness of slower unbounded materials than water. An electro-mechanical source, which can generate reversed S-wave signals, was utilized in the logging. The stone column was delineated from the S-wave travel times across the stone column, and taking S-wave velocities of the crushed stone and surrounding soil into account. The volume calculated from the diametrical variance delineated is very close to the actual quantity of the stone filled.

  • PDF

A Comparison Study on Compression Index of Marine Clay with High-Plasticity (고소성 해성점토지반의 압축지수에 대한 비교 연구)

  • Jung, Gil-Soo;Park, Byung-Soo;Hong, Young-Kil;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.57-65
    • /
    • 2005
  • In this paper, for the highly plastic marine soft clay distributed in west and southern coast of Korean peninsula of Kwangyang and Busan New Port areas, correlation between compression index and other indices representing geotechnical engineering properties such as liquid limit, void ratio and natural water content were analyzed. Appropriate empirical equations of being able to estimate the compressibility of clays in the specific areas were proposed and compared with other existing empirical ones. For analyses of the data and test results, data for marine clays were used from areas of the South Container Port of the Busan New Port, East Breakwater, Passenger Quay, Jungma Reclamation and Reclamation Containment in the 3rd stage in Kwangyang. In order to find the best regression model by using the commercially available software, MS EXCEL 2000, results obtained from the simple linear regression analysis, using the values of liquid limit, initial void ratio and natural water content as independent variables, were compared with the existing empirical equations. Multiple linear regression was also performed to find the best fit regression curves for compression index and other soil properties by combining those independent variables. On the other hands, another software of SPSS for non-linear regression was used to analyze the correlations between compression index and other soil properties.

  • PDF

A Study on the Effect of Improvement Boundary of Vertical Drain Method by Finite Element Analysis (유한요소해석을 이용한 연직배수재의 타설범위에 따른 개량효과에 관한 연구)

  • Chang, Y.C.;Kim, J.H.;Lee, J.S.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • Soft foundation is extensively distributed in coastal areas including our local regions. Embankment load on such soft foundation causes displacement due to lack of base ground supports. Long-term consolidation can result in settlement and destruction of shear failure and structure. Therefore, a variety of vertical drain methods are applied to construction sites to prevent base from breaking and changing for secure construction. This study analyzed the patterns of changes displacement to determine efficient range of improvement since range of vertical drain material determines vertical and horizontal changes based on the width range of under ground improvement. Changes of intensity with distance from embankment edge were also analyzed in the field study of embankment slope.

  • PDF

Suggestion of the Prediction Method about Upheaval Shape and Volume for SCP Construction (SCP 시공에 따른 융기토 형상과 체적의 예측기법 제안)

  • Jeong, Gyeong-Hwan;Park, Chan-Woo;Shin, Min-Sik;Hideo-Tsuboi;Mitsuo-Nozu;Lee, Sang-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.497-508
    • /
    • 2006
  • Busan-Geoje Fixed Link, total length of 8.2km, consist of bridge and immersed tunnel connects Gaduk island, Busan and Jangmokmyon, Geoje, in extension of the $58^{th}$ local road. The immersed tunnel, a total length of 3.7km within Busan-Geoje Fixed Link, was planed first timein domestic but the deep water depth like maximum of 50m with offshore conditions and the 35m thickness of soft clay layer under the immersed tunnel, migth be some problems like the differential settlement during or after works. So it was designed to install SCP(Sand Compaction Pile) column partially to improve the soft ground under the immersed tunnel. In this paper, it is presented to illustrate the design including ground condition under the immersed tunnel, improvement design, upheaval shape and ratio due to SCP test construction.

  • PDF

The Study on Improvement Methods for The Seismic Performance of Port Structures (항만 구조물의 내진성능 향상을 위한 배면 지반의 보강방안에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.151-165
    • /
    • 2019
  • In this study, the four types of improvement methods (increase self weight and reducing sliding force etc.) were proposed depending on install location with compaction grouting to improve seismic performance of existing port structure and optimal methods by analyzing the effects of improvement (stability, constructability and economy) by theoretical and numerical methods. From the dynamic time history analysis for artificial seismic waves, the results indicated that the horizontal displacement after improvement decreased compared to before improvement, however the displacement reduction effect among improvement methods was not significantly different. Slope stability based on the strength reduction method and the limit equilibrium analysis method, it is confirmed that the passive pile method is more safe than other methods. It is due to the shear strength at the failure surface is increased. In addition, the analysis of constructability and economy showed that the reduction of earth pressure method (type 02) and the passive pile method (type 03) are excellent. However, in the case of the passive pile method is concerned that there is a shortage of design cases and the efficiency can be reduced depend on various constraints such as ground conditions.