• Title/Summary/Keyword: compaction degree

Search Result 143, Processing Time 0.02 seconds

Investigation of Stiffness Characteristics of Subgrade Soils under Tracks Based on Stress and Strain Levels (응력 및 변형률 수준을 고려한 궤도 흙노반의 변형계수 특성 분석)

  • Lim, Yujin;Kim, DaeSung;Cho, Hojin;Sagong, Myoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.386-393
    • /
    • 2013
  • In this study, the so-called repeated plate load bearing test (RPBT) used to get $E_{v2}$ values in order to check the degree of compaction of subgrade, and to get design parameters for determining the thickness of the trackbed foundation, is investigated. The test procedure of the RPBT method is scrutinized in detail. $E_{v2}$ values obtained from the field were verified in order to check the reliability of the test data. The $E_{v2}$ values obtained from high-speed rail construction sites were compared to converted modulus values obtained from resonant column (RC) test results. For these tests, medium-size samples composed of the same soils from the field were used after analyzing stress and strain levels existing in the soil below the repeated loading plates. Finite element analyses, using the PLAXIS and ABAQUS programs, were performed in order to investigate the impact of the strain influence coefficient. This was done by getting newly computed $I_z$ to get the precise strain level predicted on the subgrade surface in the full track structure; under wheel loading. It was verified that it is necessary to use precise loading steps to construct nonlinear load-settlement curves from RPBT in order to get correct $E_{v2}$ values at the proper strain levels.

A Study on Constructability Estimation of Multi-component High Fluidity Concrete based on Mock-up Test (모의실험체에 의한 다성분계 고유동 콘크리트의 시공성능 평가에 관한 연구)

  • Kwon, Ki-Joo;Noh, Jea-Myoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2010
  • As structures become larger, taller, and more diverse, a high degree of technology and expertise are required in the construction industry. However, it has been becoming difficult to construct under severe conditions and to fulfill the high performance needs of structures due to a lack of skilled construction engineers. To compensate for these weak points, high-performance concrete and performance specifications have been developed. The application of reliable high-fluidity concrete, which is one of these efforts, is expected to be effective in terms of overcoming severe conditions, reducing the number of workers required, and shortening the construction period. In order to apply high fluidity concrete in the field, practical mock-up tests were carried out to estimate whether self-compaction concrete could satisfy constructability needs. From the results, it was verified that the multi-component high fluidity concrete has excellent flowability in practical structures. In addition, it was shown that the temperature distribution in the concrete due to hydration heat is satisfactory. As a result, it is judged that multi-component high fluidity concrete can be utilized as an effective building material for various structures, including structures related to the electric power industry.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Effects of Loading Method on the Behavior of Laterally Cyclic Loaded Piles in Sand (모래지반에서 재하방법이 반복수평하중을 받는 말뚝의 거동에 미치는 영향)

  • Paik, Kyu-Ho;Kim, Young-Jun;Lee, Seung-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.63-73
    • /
    • 2011
  • The behavior of laterally cyclic loaded piles is affected by the magnitude and number of cycles of cyclic lateral loads as well as loading method (1-way or 2-way loading). In this study, calibration chamber tests were carried out to investigate the effects of loading method of cyclic lateral loads on the behavior of piles driven into sand. Results of the chamber tests show that the permanent lateral displacement of 1-way cyclic loaded piles is developed in the same direction as the first loading, whereas that of 2-way cyclic loaded piles is developed in the reverse direction of the first loading. 1-way cyclic lateral loads cause a decrease of the ultimate lateral load capacity of piles, and 2-way cyclic lateral loads cause an increase of the ultimate lateral load capacity of piles. The change of ultimate lateral load capacity with loading method of cyclic lateral loads increases with increasing number of cycles. It is also observed that the 1-way cyclic loads generate greater maximum bending moment than 2-way cyclic loads for piles in cyclic loading step and generates smaller maximum bending moment for piles in the ultimate state. It can be attributed to the difference in compaction degree of the soil around the piles with loading method of cyclic lateral loads. In addition, it is founded that 1-way and 2-way cyclic lateral loads cause a decrease in the maximum bending moment of piles in the ultimate state compared with that of piles subjected to only monotonic loads.

Studies on the Frost Heave Revelation and Deformation Behaviour due to Thawing of Weathered Granite Soils (화강암 풍화토의 동상 발현 및 융해에 따른 변형 거동에 관한 연구)

  • 류능환;최중대;류영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.61-71
    • /
    • 1995
  • Natural ground is a composite consisted of the three phases of water, air and soil paircies. Among the three components, water as a material is weU understood but soil particles are not in foundation engineering. Especially, weathered granite soil generally shows a large volumetric expansion when they freeze. And, the stability and durability of the soil have shown decreased with repetitive freezing and thawing processes. These unique charcteristics may cause various construction and management problems if the soil is used as a construction material and foundation layers. This project was initiated to investigate the soil's physical and engineering characteristics resulting from freezing and freezing-thawing processes. Research results may be used as a basic data in solving various problems related to the soil's unique characteristics. The following conclusions were obtained: The degree of decomposition of weathered granite soil in Kangwon-do was very different between the West and East sides of the divide of the Dae-Kwan Ryung. Soil particles distributed wide from very coarse to fine particles. Consistency could be predicted with a function of P200 as LL=0.8 P200+20. Permeability ranged from 10-2 to 10-4cm/sec, moisture content from 15 to 20% and maximum dry density from 1.55 to 1.73 g /cmΥ$^3$ By compaction, soil particles easily crushed, D50 of soil particles decreased and specific surface significantly increased. Shear characteristics varied wide depending on the disturbance of soil. Strain characteristics influenced the soil's dynamic behviour. Elastic failure mode was observed if strain was less than 1O-4/s and plastic failure mode was observed if strain was more than 10-2/s. The elastic wave velocity in the soil rapidly increased if dry density became larger than 1.5 g /cm$^3$ and these values were Vp=250, Vg= 150, respectively. Frost heave ratio was the highest around 0 $^{\circ}C$ and the maximum frost heave pressure was observed when deformation ratio was less than 10% which was the stability state of soil freezing. The state had no relation with frost depth. Over freezing process was observed when drainage or suction freezing process was undergone. Drainage freezing process was observed if freezing velocity was high under confined pressure and suction frost process was occurred if the velocity was low under the same confined process.

  • PDF

INFLUENCE OF NICKEL-TITANIUM SPREADER ON THE SEALING ABILITY IN LATERAL CONDENSATION TECHNIQUE (측방가압충전시 Nickel-Titanium spreader의 사용유무가 근관충전효과에 마치는 영향)

  • Min, Kyung-San;Hong, Chan-Ui;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.381-389
    • /
    • 2000
  • Lateral condensation with gutta-percha and sealer has been shown to provide an excellent apical seal; however, the lateral condensation technique has demonstrated less favorable apical leakage results in curved canals when compared with straight canals. Placement of endodontic spreaders to within 1 to 2mm of the root canal working length has been advocated for optimum gutta-percha obturation. Due to their stiffness, stainless-steel(SS) spreaders will often fail to achieve this position in curved canals. Newly marketed nickel-titanium(NT) spreaders may offer an advantage in this regard due to the increased flexibility of these instruments. The purpose of this study was to evaluate the effect of NT finger spreader on the sealing ability in lateral condensation technique, compared with conventional SS finger spreader. Twenty four standardized resin models simulating curved canals(30 degree) were randomly placed into 2 groups and instrumented to a #30 master apical file size with Ni-Ti Profile .04 taper series using step down technique. Each groups was obturated with standardized gutta-percha cone by standard lateral condensation technique using SS finger spreader, NT finger spreader. And then, each model was sectioned horizontally with microtome at 1, 2, 3, 4, 5mm levels from the apex. At each of 5 levels, ratio of the area of gutta-percha was obtained by calculating the area of gutta-percha to the total area of the canal. The data collected were then analyzed statistically using a t test for independent samples. The results as follows ; 1. The total mean ratio of area of gutta-percha was 89.20${\pm}$7.00(%) for SS spreader group. 92.20${\pm}$5.17(%) for NT spreader group. There was statistically significant difference between each group(p<0.05). 2. At 3mm level, the mean ratio of area of gutta-percha was 88.32${\pm}$5.41(%) for SS spreader group, 95.25${\pm}$2.60(%) for NT spreader group. There was statistically significant difference between each group(p<0.05). At 1,2,4mm levels, NT spreader group showed greater mean ratio of area of gutta-percha than SS spreader group, too. But there was no statistically significant difference. 3. At 5mm level, the mean ratio of area of gutta-percha was 91.83${\pm}$3.42(%) for SS spreader group, 87.91${\pm}$3.68(%) for NT spreader group. There was statistically significant difference between each group(p<0.05). This study concluded that the NT spreader demonstrated somewhat favorable apical sealing effect than SS spreader in prepared curved canals. The clinical use of NT spreaders may enhance our ability to create better apical seals in curved canals, but further studies in this area will help clarify some of the remaining areas with which practitioners are concerned, such as compaction forces exerted by NT spreaders.

  • PDF

Quality and Combustion Characteristics of Miscanthus Pellet for Bioenergy (바이오에너지용 억새 펠릿의 품질 및 연소 특성)

  • Moon, Youn-Ho;Lee, Ji-Eun;Yu, Gyeong-Dan;Cha, Young-Lok;Song, Yeon-Sang;Lee, Kyeong-Bo
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.286-291
    • /
    • 2016
  • In this study we made fuel pellet from miscanthus biomass and investigated changes of physiological characteristics and electricity consumption of pelletizing process in comparison with fuel pellet made of pine sawdust. We also examined combustion characteristics including ash content and clinker forming ratio with fuel pellet made of mixing with micanthus biomass and lime powder. Bulk density of ground-miscanthus and pine sawdust were $158g\;L^{-1}$ and $187g\;L^{-1}$, respectively. Bulk density of ground miscanthus was lower than that of pine sawdust, but increased to $653g\;L^{-1}$ after pelletizing, which was similar to $656g\;L^{-1}$ of pine sawdust pellet. Moisture content in raw miscanthus and ground miscanthus were 17.0% and 11.8%, respectively. Moisture content in ground miscanthus was similar to that of pine saw dust and decreased to 6.73% after pelletizing, which was 7.7% lower than that of pine sawdust pellet. Although $27kWh\;ton^{-1}$ were required for compaction press that was an additional process in miscanthus pelleitizing, total required electricity was $193kWh\;ton^{-1}$ which was similar to $195kWh\;ton^{-1}$ of pine sawdust pellet pelleitizing. Pellet durability and pelletizing ratio of miscanthus were 98.0% and 99.7%, respectively, which were similar to 98.1% and 99.4% of pine sawdust pellet. When lime mixing ratio increased, ash melting degree and clinker forming ratio of miscanthus pellet increased. While higher heating value and clinker forming ratio of miscanthus pellet decreased.

Construction of Correlation between Basic Soil Properties and Deformation Modulus of Trackbed Soils Based on Laboratory and Field Mechanical Tests (역학적 실내외 시험에 의한 철도궤도 상부노반용 흙재료의 기본물성과 변형계수 상관성 평가)

  • Park, Jae Beom;Choi, Chan Yong;Ji, Sang Hyun;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.204-212
    • /
    • 2016
  • The soils used as trackbed in Korea are selected using USCS utilizing basic soil properties such as Grain Size Distribution(GSD), % passing of #200 sieve ($P_{200}$), % passing of #4 sieve ($P_4$), Coefficient of uniformity ($C_u$), and Coefficient of curvature ($C_c$). Degree of compaction of the soils adapted in the code by KR should be evaluated by maximum dry density (${\gamma}_{d-max}$) and deformation modulus $E_{v2}$. The most important influencing factor that is critical to stability and deformation of the compacted soils used as trackbed is stiffness. Thus, it is necessary to construct a correlation between the modulus and the basic soil properties of trackbed soil in order to redefine a new soil classification system adaptable only to railway construction. To construct the relationship, basic soil test data is collected as a database, including GSD, maximum dry unit weight (${\gamma}_{d-max}$), OMC, $P_{200}$, $P_4$, $C_u$, $C_c$, etc.; deformation modulus $E_{v2}$ and $E_{vd}$ are obtained independently by performing a Repeated Plated Bearing Test (RPBT) and Light Weight Deflectometer Test (LWDT) for ten different railway construction sites. A linear regression analysis is performed using SPSS to obtain the relationship between the basic soil properties and the deformation modulus $E_{v2}$ and $E_v$. Based on the constructed relationship and the various obtained mechanical test data, a new soil classification system will be proposed later as a guideline for the design and construction of trackbed foundation in Korea.

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

Effects of bed material on scouring under high-velocity flow conditions (고유속 흐름에서 하상재료에 따른 세굴 영향 연구)

  • Kim, Gwang Soo;Jung, Dong Gyu;Kim, Young Do;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.133-139
    • /
    • 2019
  • In this study, the degree of scouring according to the bed material according to the flow rate and the relationship between the flow velocity and the bed scouring were investigated in order to examine the operability of the revetment and embankment. The materials used in the experiment were sand and loess as materials used in the embankment. We measured the scouring of the material according to the change of the flow velocity by using the indoor high flow velocity experiment device and verified the flow rate. In this way, The purpose of this study was to compare and analyze changes in material before and after scouring, and compare basal scouring evaluation by bed material with high flow velocity. In case of sand, the cohesive force is very weak, so more than 40% of the material is lost even at less than 1.0 m/s. In the case of loess, less than 6% of the bed material is lost at more than 2 m/s. The reason why the material was lost was that the cohesion was so strong that the material was dried after the compaction and cracked. As a result, the material was lost from the part where the dry crack occurred. In this study, the composition and loss of bed materials were evaluated.