DOI QR코드

DOI QR Code

Quality and Combustion Characteristics of Miscanthus Pellet for Bioenergy

바이오에너지용 억새 펠릿의 품질 및 연소 특성

  • Moon, Youn-Ho (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Lee, Ji-Eun (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Yu, Gyeong-Dan (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Cha, Young-Lok (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Song, Yeon-Sang (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA) ;
  • Lee, Kyeong-Bo (Bioenergy Crop Research Institute, National Institute of Crop Science, RDA)
  • 문윤호 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 이지은 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 유경단 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 송연상 (농촌진흥청 국립식량과학원 바이오에너지작물연구소) ;
  • 이경보 (농촌진흥청 국립식량과학원 바이오에너지작물연구소)
  • Received : 2016.08.31
  • Accepted : 2016.09.29
  • Published : 2016.12.30

Abstract

In this study we made fuel pellet from miscanthus biomass and investigated changes of physiological characteristics and electricity consumption of pelletizing process in comparison with fuel pellet made of pine sawdust. We also examined combustion characteristics including ash content and clinker forming ratio with fuel pellet made of mixing with micanthus biomass and lime powder. Bulk density of ground-miscanthus and pine sawdust were $158g\;L^{-1}$ and $187g\;L^{-1}$, respectively. Bulk density of ground miscanthus was lower than that of pine sawdust, but increased to $653g\;L^{-1}$ after pelletizing, which was similar to $656g\;L^{-1}$ of pine sawdust pellet. Moisture content in raw miscanthus and ground miscanthus were 17.0% and 11.8%, respectively. Moisture content in ground miscanthus was similar to that of pine saw dust and decreased to 6.73% after pelletizing, which was 7.7% lower than that of pine sawdust pellet. Although $27kWh\;ton^{-1}$ were required for compaction press that was an additional process in miscanthus pelleitizing, total required electricity was $193kWh\;ton^{-1}$ which was similar to $195kWh\;ton^{-1}$ of pine sawdust pellet pelleitizing. Pellet durability and pelletizing ratio of miscanthus were 98.0% and 99.7%, respectively, which were similar to 98.1% and 99.4% of pine sawdust pellet. When lime mixing ratio increased, ash melting degree and clinker forming ratio of miscanthus pellet increased. While higher heating value and clinker forming ratio of miscanthus pellet decreased.

본 연구는 억새 바이오매스로 성형한 연료펠릿의 실용화를 앞당기기 위해 소나무 톱밥 펠릿과 비교한 성형 단계별 물리적 특성 변화, 소요 전력 그리고 성형된 펠릿의 품질을 조사하고, 연소 특성 개선을 위해 석회혼합 비율별로 펠릿을 성형하여 회분 함량 등 연소특성을 조사하였다. 겉보기 밀도는 억새가 원료단계와 분쇄 후에 소나무 톱밥에 비해 낮았으나 펠릿 성형 후에는 소나무 톱밥과 비슷하였다. 수분함량은 억새가 원료 단계에서 소나무 톱밥에 비해 높았으나 분쇄 후에는 비슷하였고, 펠릿 성형 후에는 낮아졌다. 억새는 소나무 톱밥 펠릿성형 공정에 없는 밀도증가 단계가 있지만 총 소요 전력이 비슷하였고, 성형된 펠릿의 내구성과 성형율도 소나무 톱밥과 차이가 없었다. 억새 펠릿은 석회혼합 비율이 증가함에 따라 회분함량이 증가하고 고위 발열량이 다소 낮아졌으나, 회분 용융점이 높아지고 clinker 발생률은 감소하는 경향이었다.

Keywords

References

  1. Kumar, R., Singh, S., and Singh, O. V., "Bioconversion of Lignocellulosic Biomass: Biochemical and Molecular Perspectives," J. Ind. Microbiol. Biotechnol., 35, 377-391 (2008). https://doi.org/10.1007/s10295-008-0327-8
  2. Sikkema, R., Junginger, M., Pichler, W., Hayes, S., and Faaij, A. P. C., "The International Logistics of Wood Pellets for Heating and Power Production in Europe: Costs, Energy-Input and Greenhouse Gas Balances of Pellet Consumption in Italy, Sweden and the Netherlands," Biofuels Bioprod. Biorefin. 4, 132-153 (2010). https://doi.org/10.1002/bbb.208
  3. Han, G. S., "Trend and Outlook of Wood Pellet Industry," KIC News, 15(6), 54-61 (2012).
  4. Moon, Y. H., Koo, B. C., Choi, Y. H., Ahn, S. H., Bark, S. T., Cha, Y. L., An, G. H., Kim, J. K., and Suh, S. J., "Development of "Miscanthus" the Promising Bioenergy Crop," Kor. J. Weed Sci., 30(4), 330-339 (2010). https://doi.org/10.5660/KJWS.2010.30.4.330
  5. Moon, Y. H., Cha, Y. L., Choi, Y. H., Yoon, Y. M., Koo, B. C., Ahn, J. W., An, G. H., Kim, J. K., and Park K. G., "Diversity in Ploidy Levels and Nuclear DNA Amounts in Korean Miscanthus Species," Euphytica, 193, 317-326 (2013). https://doi.org/10.1007/s10681-013-0910-6
  6. Adapa, P., Tabil, L., and Schoenau, G., "Compaction Characteristics of Barley, Canola, Oat and Wheat Straw," Biosyst. Eng., 104, 335-334 (2009). https://doi.org/10.1016/j.biosystemseng.2009.06.022
  7. Salvatore, C., Bruno, A., Gisele, F., Thierry, Z., and Jean, V. W., "Miscanthus $\times$ Giganteus Straw and Pellets as Sustainable Fuels Combustion and Emission Tests," Environ. Chem. Lett., 4, 75-78 (2006). https://doi.org/10.1007/s10311-006-0036-3
  8. Gilbert, P., Ryu, C., Sharifi, V., and Swithenbank, J., "Effect of Process Parameters on Pelletisation of Herbaceous Crops," Fuel, 88, 1491-1497 (2009). https://doi.org/10.1016/j.fuel.2009.03.015
  9. Moon, Y. H., Yang, J. W., Koo, B. C., An, J. W., Cha, Y. L., Yoon, Y. M., Yu, G. D., An, G. H., Park, K. G., and Choi, I. H. "Analysis of Factors Affecting on Miscanthus Pellet Production Using Response Surface Methodology (RSM) and the Pellet Qualities," Bio Resources, 9(2), 3334-3346 (2014).
  10. Daniel, N., Sven, B., and Per-Anders, H., "Pellet Production from Agricultural Raw Materials - A Systems Study," Biomass and Bioenergy, 35, 679-689 (2011). https://doi.org/10.1016/j.biombioe.2010.10.016
  11. Stelte, W., Holm, J. K., Sanadi, A. R. Barsberg, S., Ahrenfeldt, J., and Henriksen, U. B., "A Study of Bonding and Failure Mechanisms in Fuel Pellets from Different Biomass Resources," Biomass and Bioenergy, 35, 910-918 (2011). https://doi.org/10.1016/j.biombioe.2010.11.003
  12. National Institute of Forest Science, "Quality Criteria of Wood Pellet," Notification No. 2009-2 (2009).
  13. Sudhagar, M., Lope, G. T., and Shahab, S., "Effects of Compressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Pellets from Grasses," Biomass and Bioenergy, 30, 648-654 (2006). https://doi.org/10.1016/j.biombioe.2005.01.004
  14. Bastian, L., Hans-Werner, S., Ralf, W., and Jens-Uwe, R., "Effect of Miscanthus Addition and Different Grinding Processes on the Quality of Wood Pellets," Biomass and Bioenergy, 44, 150-159 (2012). https://doi.org/10.1016/j.biombioe.2012.05.009
  15. John, P. C., and John, F., "Physical and Chemical Properties of Pellets from Energy Crops and Cereal Straws," Biosyst. Eng., 112, 151-159 (2012). https://doi.org/10.1016/j.biosystemseng.2012.03.012
  16. Clara, S., Esperanza, M., Magín, L., and Henar, P., "Effect of Moisture Content, Particle Size and Pine Addition on Quality Parameters of Barley Straw Pellets," Fuel Proc. Technol., 92, 699-706 (2011). https://doi.org/10.1016/j.fuproc.2010.11.031
  17. Hjuler, K., "The Quality of Pellets Made from Alternative Biomass Wels," p.7, World Sustainable Energy Day, Wels (Feb.2007).
  18. Peter, S., Thomas, B., and Ingwald, O., "Fuel Indexes: A Novel Method for the Evaluation of Relevant Combustion Properties of New Biomass Fuels," Energy Fuels, 26, 380-390 (2011).
  19. Lara, C., Elisabeth, W., Christian, P., Joakim, L., Vijay, K. V., Walter, H., and Christoph, S., "Performance of a Pellet Boiler Fired with Agricultural Fuels," Appl. Energy, 104, 286-296 (2013). https://doi.org/10.1016/j.apenergy.2012.10.058

Cited by

  1. Effects of chemical composition of Miscanthus sacchariflorus var. No. 1 on pelletizing, focusing on optimal pressure and compression ratio vol.161, pp.None, 2021, https://doi.org/10.1016/j.indcrop.2020.113189
  2. 홍띠 기내 재생과 재생 녹색식물체의 유전적 안정성 vol.34, pp.2, 2021, https://doi.org/10.7732/kjpr.2021.34.2.156