• Title/Summary/Keyword: compacted Bentonite

Search Result 73, Processing Time 0.024 seconds

Water Diffusion and Resaturation in Unsaturated Compacted Bentonite (불포화 압축 벤토나이트에서의 수확산 및 재포화)

  • 고은옥;이재완;조원진;현재혁;전관식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.216-220
    • /
    • 1998
  • Experimental studies were carried out to investigate water diffusion in unsaturated compacted bentonite for a landfill of hazardous wastes. Water content distributions were measured and water diffusion coefficients were determined when the dry densities of compacted bentonite were in the range of 1.4 - 1.8 g/㎤. Resaturation times were also calculated to analyze the ability of the compacted bentonite to retard water movement. The results obtained were as follows: Diffusion model described properly the water migration in unsaturated compacted bentonite. Water diffusion coefficients ranged from 4.30$\times$10$^{-6}$ $\textrm{cm}^2$/sec to 1.93$\times$10$^{-6}$ $\textrm{cm}^2$/sec, and decreased with increasing the dry density. The dry density of compacted bentonite was found to be an important factor to control the resaturation time by water. This study suggests that the domestic compacted bentonite should be a good barrier material against water movement in a landfill of hazardous wastes.

  • PDF

Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository (심층처분장 처분공 주변 굴착손상영역에 존재하는 불연속면으로의 압축 벤토나이트 침투)

  • Lee, Changsoo;Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.193-213
    • /
    • 2020
  • A mathematical model to simulate more realistically the penetration of compacted bentonite buffer installed in the deposition hole into the discontinuity in the excavation damaged zone formed at the inner wall of the deposition hole in the geological repository for spent fuel is developed. In this model, the penetration of compacted bentonite is assumed to be the flow of Bingham fluid through the parallel planar rock fracture. The penetration of compacted bentonite is analyzed using the developed model. The results show that the maximum penetration depth of compacted bentonite into the rock fracture is proportioned to the swelling pressure of saturated compacted bentonite and the aperture of rock fracture. However, it is in inverse proportion to the yield strength of compacted bentonite. The viscosity of compacted bentonite dominates the penetration rate of compacted bentonite, but has no influence to the maximum penetration depth.

Evaluation of Water Suction for Compacted Bentonite Buffer Under Elevated Temperature Conditions

  • Yoon, Seok;Lee, Deuk-Hwan;Cho, Won-Jin;Lee, Changsoo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.185-192
    • /
    • 2022
  • A compacted bentonite buffer is a major component of engineered barrier systems, which are designed for the disposal of high-level radioactive waste. In most countries, the target temperature required to maintain safe functioning is below 100℃. If the target temperature of the compacted bentonite buffer can be increased above 100℃, the disposal area can be dramatically reduced. To increase the target temperature of the buffer, it is necessary to investigate its properties at temperatures above 100℃. Although some studies have investigated thermal-hydraulic properties above 100℃, few have evaluated the water suction of compacted bentonite. This study addresses that knowledge gap by evaluating the water suction variation for compacted Korean bentonite in the 25-150℃ range, with initial saturations of 0 and 0.22 under constant saturation conditions. We found that water suction decreased by 5-20% for a temperature increase of 100-150℃.

An Investigation of Diffusion of Iodide Ion in Compacted Bentonite Containing Ag2O (Ag2O를 첨가한 압축 벤토나이트에 대한 요오드 이온의 확산 특성 관찰)

  • Yim, Sung-Paal;Lee, Ji-Hyun;Choi, Heui-Joo;Choi, Jong-Won;Lee, Cheo-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • In the compacted bentonite containing $Ag_2O$, the transport of iodide ion was investigated by Through-diffusion method. It is confirmed that Iodide ion is transported by diffusion process in the compacted bentonite containing $Ag_2O$ as well as in the compacted bentonite without $Ag_2O$. However, the lag-time of iodide ion in the compacted bentonite containing $Ag_2O$ is larger than that in the compacted bentonite without $Ag_2O$. The increase of the lag-time was observed in pure iodide ion solution and also in 0.1M NaCl-iodide ion solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing $Ag_2O$ has lower value than that in the compacted bentonite without $Ag_2O$. The effect of $Ag_2O$ on the effective diffusion coefficient was not clearly investigated in the compacted bentonite containing $Ag_2O$ while the values of effective diffusion coefficient of iodide ion in the compacted bentonite without $Ag_2O$ obtained in this study were similar to those in the compacted bentonite reported in the literature.

Effect of Exchangeable Cation on Radionuclide Diffusion In Compacted Bentonite

  • Park, Jong-Won;Park, Hyun-Soo;Dennis W. Oscarson
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.274-279
    • /
    • 1996
  • Diffusion coefficient is a critical parameter for predicting radiological source term(migration rate and flux of radionuclide) through given near field conditions in spent fuel or high level waste repository. The effect of exchangeable cation-$Na^+$ and $Ca^{2+} - on the diffusion of $I^- \;and^3H$ (as HTO) in compacted bentonite was examined using a through-diffusion method. Bentonite material used here was compacted to a density of 1.3 Mg/m$^3$, and Na-bentonite was saturated with a solution of 100 mol NaCl/m$^3$ and Ca-bentonite with 50 $mol\;CaCl_2$/m$^3$. The results show that effective diffusion coefficients are generally higher by a factor of two to five in Ca-than Na-clay. This is attributed to the larger particle size of Ca-compared to Na-bentonite; hence, Ca-bentonite has a greater proportion of relatively large pores, which make a greater contribution to mass transport than small pores. Although the nature of the exchangeable cation affects mass diffusion in compacted bentonite, the effect is small and not likely to influence performance assessment modeling of compacted bentonite-based barriers.

  • PDF

A Study on Stress-Strain Characteristics of Compacted Bentonite for High-Level Radioactive Waste Repository (고준위폐기물 차폐용 압축벤토나이트의 응력-변형률 거동 분석)

  • Kim, Do-Hyun;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.792-797
    • /
    • 2009
  • The stress-strain characteristics of compacted bentonite are investigated using experimental triaxial compression test by Hoek-cell. Special attention given to various dry density and water absorption ratio. Based on the test results, it is shown that the stress-strain relationship of compacted bentonite is highly influenced by dry density and water absorption ratio. Also, characteristics of Bentonite is similar to the clay rather than sand. Strength of compressed Bentonite increases with higher dry density. It shows maximum strength value, if in a same condition with dry density and constrain pressure. So we determine that value as the optimistic moisture contents for the maximun strength of compressed Bentonite.

  • PDF

Evaluation on Compression Wave Velocities and Moduli of Gyeongju Compacted Bentonite (경주 압축 벤토나이트의 압축파속도와 탄성계수 산정 연구)

  • Balagosa, Jebie;Yoon, Seok;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.41-50
    • /
    • 2019
  • Gyeongju bentonite is a buffer material primarily considered in Korea and it is highly compacted as a part of an engineered barrier system (EBS) of high-level radioactive waste repository. The compacted bentonite undergoes swelling stress by groundwater penetration and thermal stress by decay heat from a canister. Therefore, the mechanical properties of the compacted bentonite buffer material is crucial for the performance assessment of EBS. This paper aims to evaluate deformation properties of Gyeongju compacted bentonite using seismic methods. Two sets of compacted bentonite specimens were prepared having dry densities of $1.59g/cm^3$ and $1.75g/cm^3$ with water contents of 10.6% and 8.7%. Free-free resonant column tests were performed to measure constrained and unconstrained compression wave velocities. With the measured wave velocities, Young's modulus ($E_{max}$) and constrained modulus ($M_{max}$), material damping ratio ($D_{min}$), and Poisson's ratio at small strain were determined. As results, this paper evaluates the deformation properties of Gyeongju compacted bentonite and compares them with the results of previous researches.

Measuring thermal conductivity and water suction for variably saturated bentonite

  • Yoon, Seok;Kim, Geon-Young
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1041-1048
    • /
    • 2021
  • An engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW) is composed of a disposal canister with spent fuel, a buffer material, a gap-filling material, and a backfill material. As the buffer is located in the empty space between the disposal canisters and the surrounding rock mass, it prevents the inflow of groundwater and retards the spill of radionuclides from the disposal canister. Due to the fact that the buffer gradually becomes saturated over a long time period, it is especially important to investigate its thermal-hydro-mechanical-chemical (THMC) properties considering variations of saturated condition. Therefore, this paper suggests a new method of measuring thermal conductivity and water suction for single compacted bentonite at various levels of saturation. This paper also highlights a convenient method of saturating compacted bentonite. The proposed method was verified with a previous method by comparing thermal conductivity and water suction with respect to water content. The relative error between the thermal conductivity and water suction values obtained through the proposed method and the previous method was determined as within 5% for compacted bentonite with a given water content.

A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory

  • Sun, Haiquan
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.71-83
    • /
    • 2018
  • Compacted bentonites were chosen as the backfill material and buffer in high level nuclear waste disposal due to its high swelling pressure, high ion adsorption capacity and low permeability. It is essential to estimate the swelling pressure in design and considering the safety of the nuclear repositories. The swelling pressure model of expansive clay colloids was developed based on Gouy-Chapman diffuse double layer theory. However, the diffuse double layer model is effective in predicting low compaction dry density (low swelling pressure) for certain bentonites, and invalidation in simulating high compaction dry density (high swelling pressure). In this paper, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, were established based on the Gouy-Chapman theory by considering the variation of void ratio. The new developed model was constructed based on the published literature data of compacted Na-bentonite (MX80) and Ca-bentonite (FoCa) for sodium and calcium bentonite respectively. The proposed models were applied to re-compute swelling pressure of other compacted Na-bentonites (Kunigel-V1, Voclay, Neokunibond and GMZ) and Ca-bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, Montigel bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure in all cases.