DOI QR코드

DOI QR Code

Evaluation on Compression Wave Velocities and Moduli of Gyeongju Compacted Bentonite

경주 압축 벤토나이트의 압축파속도와 탄성계수 산정 연구

  • Balagosa, Jebie (Dept. of Civil & Environmental Engrg., Kongju National Univ.) ;
  • Yoon, Seok (Radioactive Waste Disposal Research Division, KAERI) ;
  • Choo, Yun Wook (Dept. of Civil & Environmental Eng., Kongju National Univ.)
  • ;
  • 윤석 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 추연욱 (공주대학교 건설환경공학부)
  • Received : 2019.05.26
  • Accepted : 2019.06.11
  • Published : 2019.07.31

Abstract

Gyeongju bentonite is a buffer material primarily considered in Korea and it is highly compacted as a part of an engineered barrier system (EBS) of high-level radioactive waste repository. The compacted bentonite undergoes swelling stress by groundwater penetration and thermal stress by decay heat from a canister. Therefore, the mechanical properties of the compacted bentonite buffer material is crucial for the performance assessment of EBS. This paper aims to evaluate deformation properties of Gyeongju compacted bentonite using seismic methods. Two sets of compacted bentonite specimens were prepared having dry densities of $1.59g/cm^3$ and $1.75g/cm^3$ with water contents of 10.6% and 8.7%. Free-free resonant column tests were performed to measure constrained and unconstrained compression wave velocities. With the measured wave velocities, Young's modulus ($E_{max}$) and constrained modulus ($M_{max}$), material damping ratio ($D_{min}$), and Poisson's ratio at small strain were determined. As results, this paper evaluates the deformation properties of Gyeongju compacted bentonite and compares them with the results of previous researches.

국내 고준위폐기물처분장 공학적방벽(EBS)의 일부가 되는 완충재로 경주 벤토나이트가 우선적으로 고려되고 있다. 압축벤토나이트는 지하수침투로 인한 팽윤압과 처분용기에서 발산되는 열응력을 경험한다. 따라서 EBS의 성능평가를 위해서 역학적 물성의 산정이 중요하다. 본 논문은 탄성파를 이용하여 경주 압축벤토나이트의 변형특성 측정을 목표로 하였다. 두 개의 $1.59g/cm^3$$1.75g/cm^3$의 건조밀도를 가지는 압축벤토나이트 시편을 제작하였고, 자유단-자유단 공진주시험을 수행하여 구속압축파속도와 비구속압축파속도를 측정하였다. 측정된 압축파속도를 이용하여 미소변형에서의 탄성계수($E_{max}$), 구속탄성계수($M_{max}$), 감쇠비($D_{min}$), 포아송비를 측정하였다. 그 결과로 경주 압축벤토나이트의 변형특성을 산정 제시하여 선행연구 결과들과 비교 분석하였다.

Keywords

GJBGC4_2019_v35n7_41_f0001.png 이미지

Fig. 1. Engineered Barrier System

GJBGC4_2019_v35n7_41_f0002.png 이미지

Fig. 2. X–ray diffraction patterns of the KJ-I and KJ-II powders (Yoon et al., 2018a)

GJBGC4_2019_v35n7_41_f0003.png 이미지

Fig. 3. Typical string-suspended specimen and manual longitudinal excitation for Vc and Vp measurements: (a) Schematic diagram, and (b) photo

GJBGC4_2019_v35n7_41_f0004.png 이미지

Fig. 4. Typical frequency response curve of FFRC for GJ-B

GJBGC4_2019_v35n7_41_f0005.png 이미지

Fig. 5. Half-power bandwidth method

GJBGC4_2019_v35n7_41_f0006.png 이미지

Fig. 6. Direct travel time measurement (Trial 3, using 10-mm diameter ball on GJ-A)

GJBGC4_2019_v35n7_41_f0007.png 이미지

Fig. 7. Frequency response curves of (a) GJ-A, and (b) GJ-B

GJBGC4_2019_v35n7_41_f0008.png 이미지

Fig. 8. Velocity measurements, compared to Spanish Bentonite with minor sandy size filler constituents montmorillonite > 95 volume %, ρd = 1.66 g/cm3 ; Vp evaluation of Tisato and Marelli. (2013)

GJBGC4_2019_v35n7_41_f0009.png 이미지

Fig. 10. Comparison with damping ratio of Vucetic & Dobry (1991) and Kim and Choo (2001)

GJBGC4_2019_v35n7_41_f0010.png 이미지

Fig. 11. Comparison with Poisson’s ratio of this study with Cho et al. (1999) and Eloranta (2012)

GJBGC4_2019_v35n7_41_f0011.png 이미지

Fig. 9. Comparison with Young’s Modulus of (a) Kunigel VI & MX-80, and (b) KJ-I of Cho et al. (1999)

Table 1. Quantitative XRD analysis for mineral constituents of KJ-I and KJ-II powders (Yoon et al., 2018a)

GJBGC4_2019_v35n7_41_t0001.png 이미지

Table 2. Properties of compacted bentonite specimens

GJBGC4_2019_v35n7_41_t0002.png 이미지

Table 3. Young’s modulus of compacted bentonite

GJBGC4_2019_v35n7_41_t0003.png 이미지

Table 4. Poisson’s ratio of compacted bentonite

GJBGC4_2019_v35n7_41_t0004.png 이미지

Table 5. Summary of the compressive seismic velocities and moduli of this study

GJBGC4_2019_v35n7_41_t0005.png 이미지

References

  1. Alonso, E.E., Springman, S.M., and Ng, C.W.W. (2008), "Monitoring Large-Scale Tests for Nuclear Waste Disposal", Geotechnical and Geological Engineering, Vol.26, No.6, pp.817-826. https://doi.org/10.1007/s10706-008-9195-2
  2. Bay, J. A. and Stokoe, I. I. (1992), "Field and laboratory determination of elastic properties of portland cement concrete using seismic techniques", Transportation Research Record, No.1355, pp.67-74.
  3. Cho, W.J., Lee, J.O., and Kwon, S. (2010), "Analysis of thermohydro-mechanical process in the engineered barrier system of a high-level waste repository", Nuclear Engineering and Design, Vol.240, No.6, pp.1688-1698. https://doi.org/10.1016/j.nucengdes.2010.02.027
  4. Cho, W.J., Lee, J.O., Kang, C.H., and Chun, K.S. (1999), Physicochemical, mineralogical and mechanical properties of domestic bentonite and bentonite-sand mixture as a buffer material in the high-level waste repository, Research Report, KAERI/TR--1388/99, Korea Atomic Energy Research Institute, Korea.
  5. Choi, H.J., Lee, J.Y., and Kim, S.S. (2008), Korean reference HLW disposal system, Research Report, KAERI/TR--3563/2008, Korea Atomic Energy Research Institute, Korea.
  6. Eloranta, A. (2012), Experimental Methods for Measuring Elasto-Plastic Parameters of Bentonite Clay, MS Dissertation, University of Jyvaskyla, FIN.
  7. Ezersky, M.G. (2017), "Behavior of Seismicacoustic Parameters during Deforming and Failure of Rock Samples, Large Blocks and Underground Opening: base for Monitoring", International Journal of Geo-Engineering, Vol.8, No.13.
  8. Garcia-Gutierrez, M., Missana, T., Mingarro, M., Samper, J., Dai, Z., and Molinero, J. (2001), "Solute Transport Properties of Compacted Ca-Bentonite used in FEBEX Project", Journal of Contaminant Hydrology, Vol.47, No.2-4, pp.127-137. https://doi.org/10.1016/S0169-7722(00)00143-1
  9. Ismail, H. and Shaari, S.M. (2010), "Curing characteristics, tensile properties and morphology of palm ash or halloysite nanotubes or ethylene-propylene-diene monomer (EPDM) hybrid composites", Polymer Testing, Vol.29, No.7, pp.872-878. https://doi.org/10.1016/j.polymertesting.2010.04.005
  10. Kim, D.S. and Choo, Y.W. (2001), "Dynamic deformation characteristics of cohesionless soils in korea using resonant column tests", Journal of Korean Geotechnical Society, Vol.17, No.5, pp.115-128.
  11. Kim, J.S., Yoon, S., Cho, W.J., Choi, Y.C., and Kim, G.Y. (2018), "A Study on the Manufacturing Characteristics and Field Applicability of Engineering-scale Bentonite Block in a High-level Nuclear Waste Repository", Journal of Nuclear Fuel Cycle and Waste Technology, Vol.16, No.1, pp.123-136. https://doi.org/10.7733/jnfcwt.2018.16.1.123
  12. Koch, D. (2002), "Bentonites as a Basic Material for Technical base Liners and Site Encapsulation Cut-off Walls", Applied Clay Science, Vol.21, No.1-2, pp.1-11. https://doi.org/10.1016/S0169-1317(01)00087-4
  13. Lee, C., Yoon, S., Cho, W.J., Jo, Y., Lee, S., Jeon, S., and Kim, G.Y. (2019), "Study on Thermal, Hydraulic, and Mechanical Properties of KURT Granite and Geyongju Bentonite", Journal of Nuclear Fuel Cycle and Waste Technology, Vol.17, No.S, pp.81-95. https://doi.org/10.7733/jnfcwt.2019.17.S.81
  14. Lee, J., Cho, D., Choi, H., and Choi, J. (2007), "Concept of a Korean Reference Disposal System for Spent Fuels", Journal of Nuclear Science and Technology, Vol. 44, No.12, pp.1565-1573. https://doi.org/10.1080/18811248.2007.9711407
  15. Lloret, A., Villar, M.V., Sanchez, M., Gens, A., Pintado, X., and Alonso, E. (2003), "Mechanical behaviour of Heavily Compacted Bentonite under High Suction Changes", Geotechnique, Vol.53, No.1, pp.27-40. https://doi.org/10.1680/geot.2003.53.1.27
  16. Pucci, M.J. (2010), Development of a Multi-measurement Confined Free-Free Resonant Column Device and Initial Studies, Ph.D Dissertation, University of Texas at Austin, TX.
  17. Richart, F.E. Hall, J.R., and Woods R.D. (1970), Vibrations of Soils and Foundations, Prentice-Hall. Inc., Englewood Cliffs, New Jersey.
  18. Sarifuddin, N. and Ismail, H. (2013), "Comparative study on the effect of bentonite or feldspar filled low-density polyethylene or thermoplastic sago starch or kenaf core fiber composites", Bioresources, Vol.8, No.3, pp.4238-4257.
  19. Sharma, R., Gupta, V., Arora, B. R., and Sen, K. (2011), "Petrophysical properties of the Himalayan granitoids: implication on composition and source", Tectonophysics, Vol.497, No.1-4, pp. 23-33. https://doi.org/10.1016/j.tecto.2010.10.016
  20. Swedish Nuclear Fuel Supply Co./Division KBS (1983), Final storage of spent nuclear fuel-KBS-3, III barriers, Technical Report, pp.9:1-16:12.
  21. Tisato, N. and Marelli, S. (2013), "Laboratory Measurements of the Longitudinal and Transverse Wave Velocities of Compacted Bentonite as a Function of Water Content, Temperature, and Confining Pressure", Journal of Geophysical Research: Solid Earth, Vol.118, No.7, pp.3380-3393. https://doi.org/10.1002/jgrb.50252
  22. Vucetic, M. and Dobry, R. (1991), "Effect of Soil Plasticity on Cyclic Response", Journal of Geotechnical Engineering, Vol.117, No.1, pp.89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
  23. Wersin, P. (2003), "Geochemical Modelling of Bentonite Porewater in High-level Waste Repositories", Journal of Contaminant Hydrology, Vol.61, No.1-4, pp.405-422. https://doi.org/10.1016/S0169-7722(02)00119-5
  24. Yoo, M., Choi, H.J., Lee, M.S., and Lee, S.Y. (2015), Chemical and Mineralogical Characterization of Domestic Bentonite for a Buffer of an HLW Repository, Research Report, KAERI/TR-6182, Korean Atomic Energy Research Institute.
  25. Yoon, S., Cho, W., Lee, C., and Kim, G.Y. (2018a), "Thermal Conductivity of Korean Compacted Bentonite Buffer Materials for a Nuclear Waste Repository", Energies, Vol.11, No.9, p.2269. https://doi.org/10.3390/en11092269
  26. Yoon, S., Kim, M.J., Lee, S.R., and Kim, G.Y. (2018b), "Thermal Conductivity Estimation of Compacted Bentonite Buffer Materials for a High-level Radioactive Waste Repository", Nuclear Technology, Vol.204, No.2, pp.213-226. https://doi.org/10.1080/00295450.2018.1471909
  27. Yoon, S., Jeon, J.S., Kim, G.Y., Seong, J.H., and Baik, M.H. (2019), "Specific Heat Capacity Model for Compacted Bentonite Buffer Materials", Annals of Nuclear Energy, Vol.125, pp.18-25. https://doi.org/10.1016/j.anucene.2018.10.045

Cited by

  1. Experimental Investigation on Small-Strain Dynamic Properties and Unconfined Compressive Strength of Gyeongju Compacted Bentonite for Nuclear Waste Repository vol.24, pp.9, 2019, https://doi.org/10.1007/s12205-020-0372-z