• Title/Summary/Keyword: compact balun

Search Result 25, Processing Time 0.021 seconds

An E-Band Compact MMIC Single Balanced Diode Mixer for an Up/Down Frequency Converter (E-대역 상/하향 주파수 변환기용 소형 MMIC 단일 평형 다이오드 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.538-544
    • /
    • 2011
  • This paper presents a compact single balanced diode mixer fabricated using a 0.1 ${\mu}M$ GaAs p-HEMT commercial process for an E-band frequency up/down converter. This mixer includes a LO balun employing a Marchand balun with a good RF performance. In order to improve the port-to-port isolation, a high pass filter and a low pass filter are include in this mixer at the RF and IF ports, respectively. The fabricated mixer with a very compact size of 0.58 mm2(0.85 mm${\times}$0.68 mm) exhibits a conversion loss of 8~12 dB and an input P1dB of 1~5 dBm at the LO power of 10 dBm from 71~86 GHz.

Low-Loss Broadband Planar Balun with CPW-to-Slotline Transition for UHF Applications

  • Hong, Young-Pyo;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.146-151
    • /
    • 2009
  • This paper presents a low-loss broadband balun that uses a coplanar waveguide-to-slotline field transformation. It operates over a very wide frequency range and is of compact size since it does not depend on a resonant structure. To analyse imbalance, the coplanar wavelength(CPW) input ground is connected to the CPW output ground through various capacitors to introduce common-mode impedances. As the common-mode impedance increased the imbalance became significantly higher at the higher-frequency band compared with the lower-frequency band. The bias-circuit approach is used to improve the operation bandwidth of the lower-frequency band. The measured results show a passband of 200 MHz to 2 GHz, an insertion loss of less than 0.75 dB, and a size of $20{\times}14\;mm$. The amplitude imbalance is approximately 0.3 dB and the phase imbalance is less than $6^{\circ}$ over the entire operational range.

Design of Compact and Broadband Quasi-Yagi Antenna Using Balance Analysis of the Balun (발룬의 평형도 해석을 이용한 소형화된 광대역 Quasi-Yagi 안테나 설계)

  • Woo, Dong Sik;Kim, In-Bok;Kim, Young-Gon;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • In this paper, a compact, broadband quasi-Yagi antenna utilizing balance analysis of the ultra-wideband microstrip-to-coplanar stripline(MS-to-CPS) balun is proposed. The antenna size was reduced by removing the reflector on bottom layer and ground plane is used as a reflector. A planar balun that transforms from microstrip(MS) to balanced coplanar stripline(CPS) is characterized in the amplitude and phase imbalances at CPS output ports are investigated and discussed. As compared with the conventional balun, the proposed MS-to-CPS balun demonstrated very wideband performance from 7 to over 20 GHz. From the simulation study, amplitude and phase imbalances are within 1 dB and ${\pm}5^{\circ}$, respectively. The implemented antenna provides very wide bandwidth from 6.9 to 15.1 GHz(74.5 %). The gain of the antenna is from 3.7 to 5.5 dBi, the front-to-back ratio is more than 10 dB, and the nominal radiation efficiency is about 94 %.

Capacitively Loaded Loop Antenna Fed with Metamaterial Balun (Metamaterial 발룬으로 급전된 Capacitively Loaded 루프 안테나)

  • Jung, Youn-Kwon;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1084-1090
    • /
    • 2009
  • This paper presents a balun consisting of a T-junction, a Right/Left Handed Transmission line(RLH-TL), and a conventional Right Handed(RH) line. It is assumed that the RLH-TL consists of N unit-cells. We provide closed-form solutions and design a very compact wideband(80 %) balun using CPW lines based on the obtained solutions. Then, we propose a capacitively loaded loop antenna designed for a uniform current distribution. The antenna resistance of the proposed antenna at resonance is about 204 ohms. The length of the unit cell is about $\lambda/12$(total length: $1\;\lambda$). The magnetic field generated from the proposed antenna is stronger than that of the conventional one by as much as 20 dB. We used a coplanar strip line(CPS) to combine the loop antenna and balun. The proposed antenna may be used as a near field UHF RFID reader antenna.

A Novel CPW Balanced Distributed Amplifier Using Broadband Impedance-Transforming MEMS Baluns

  • Lee, Sanghyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.610-612
    • /
    • 2013
  • A novel balanced distributed amplifier (DA) was proposed using novel impedance transforming MEMS baluns. The impedance transforming MEMS balun is matched to $50{\Omega}$ at one input port and $25{\Omega}$ at two output ports. It is based on the electric field mode-change method, thus it is strongly independent of frequency and very compact. The novel balanced DA consists of two $25{\Omega}$-matched DAs and these are combined by $50{\Omega}$-to-$25{\Omega}$ baluns. Theoretically, it has two times wider bandwidth and power capability than the conventional DA. So as to verify the proposed concept, we designed and fabricated a conventional DA and the proposed one using 0.15-${\mu}m$ GaAs pHEMT technology.

Compact Microstrip-Fed Square Loop Antenna for DTV Applications

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.222-226
    • /
    • 2016
  • A design method for a compact square loop antenna fed by a microstrip (MS) line for indoor digital television (DTV) applications is proposed. The proposed antenna consists of a square loop, circular sectors, and an MS line. The square loop combined with circular sectors is printed on one side of a substrate, and a $75-{\Omega}$ MS line is printed on the other side. The circular sectors are used as a wideband balun or transition to connect the MS line and the square loop. A prototype of the proposed square loop antenna operating in the DTV band (470-806 MHz) is designed and fabricated on an FR4 substrate. Experimental results show that the proposed antenna has the desired impedance characteristics in the frequency band of 464-1,220 MHz (89.8%) for a voltage standing wave ratio (VSWR) of <2 covering the DTV band, and a broadside gain of 0.8-3.3 dBi in the DTV band.

Design of a compact coplanar waveguide-fed 2-element quasi-Yagi antenna (코플래너 도파관으로 급전되는 소형 2-소자 준-야기 안테나 설계)

  • Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2199-2205
    • /
    • 2016
  • In this paper, a design method for a coplanar waveguide (CPW)-fed 2-element quasi-Yagi antenna (QYA) is studied. A balun between CPW and coplanar strip (CPS) which feeds a planar dipole is implemented by connecting the one end of ground strips in a CPW to a signal strip. The antenna size is reduced by bent strip dipole and reflector, and an integrated balun. The proposed antenna was designed for the operation in a UHF radio frequency identification (RFID) band of 902-928 MHz, and the effects of various parameters such as dipole length, reflector length, distance between dipole and reflector, feed position were examined. The antenna with a size of $90mm{\times}80mm$ was fabricated on an FR4 substrate, and the experiment results reveal a frequency band of 885-942 MHz for a voltage standing wave ratio < 2, a gain > 4.3 dBi, and a front-to-back ratio > 7 dB over the frequency band for the UHF RFID.

An MMIC Doubly Balanced Resistive Mixer with a Compact IF Balun (소형 IF 발룬이 내장된 MMIC 이중 평형 저항성 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1350-1359
    • /
    • 2008
  • This paper presents a wideband doubly balanced resistive mixer fabricated using $0.5{\mu}m$ GaAs p-HEMT process. Three baluns are employed in the mixer. LO and RF baluns operating over an 8 to 20 GHz range were implemented with Marchand baluns. In order to reduce chip size, the Marchand baluns were realized by the meandering multicoupled line and inductor lines were inserted to compensate for the meandering effect. IF balun was implemented through a DC-coupled differential amplifier. The size of IF balun is $0.3{\times}0.5\;mm^2$ and the measured amplitude and phase unbalances were less than 1 dB and $5^{\circ}$, respectively from DC to 7 GHz. The mixer is $1.7{\times}1.8\;mm^2$ in size, has a conversion loss of 5 to 11 dB, and an output third order intercept(OIP3) of +10 to +15 dBm at 16 dBm LO power for the operating bandwidth.

Design of a compact quasi-Yagi antenna for portable RFID reader (휴대형 RFID 리더용 소형 준-야기 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • In this paper, we considered a design method of a compact quasi-Yagi antenna for portable UHF RFID readers. The antenna consists of a dipole driver and a reflector printed on a dielectric substrate, and it is fed by a microstrip line. In order to reduce the antenna size, the dipole and reflector are bent and the balun between the feeding microstrip line and coplanar strip (CPS) line is integrated within the CPS line. The effects of the geometrical parameters of the proposed antenna on the antenna performance are examined, and the parameters are adjusted to be suitable for the operation in UHF RFID band (902-928 MHz). The size of the fabricated antenna is $70mm{\times}75mm$, and the experiment results reveal a frequency band of 892-942 MHz for a voltage standing wave ratio < 2, a gain > 3.5 dBi, and a front-to-back ratio > 6.6 dB over the frequency band for UHF RFID.

A Bluetooth/WiFi Dual-Mode RF Front-End Module Using LTCC Technology (LTCC 기술을 이용한 Bluetooth/WiFi 이중 모드 무선 전단부 모듈 구현)

  • Ham, Beom-Cheol;Ryu, Jong-In;Kim, Jun-Chul;Kim, Dong-Su;Park, Young-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.958-966
    • /
    • 2012
  • This paper presents a compact bluetooth/WiFi dual-mode dual-band RF front-end module(FEM) is realized by low temperature co-fired ceramic(LTCC) technology. The proposed RF front-end module consists of a diplexer, baluns in the LTCC substrate, and an SPDT switch, an SP3T switch on the LTCC substrate. In order to reduce the module size and increase integration level, the proposed diplexer and balun are designed using LC lumped elements. The parasitic elements caused by coupling effect between metal pattern layers and ground plane layer are considered during the design. The fabricated dual-mode RF front-end module has 13 pattern layers including three inner ground layers and it occupies less than $3.0mm{\times}3.7mm{\times}0.66mm$.