• Title/Summary/Keyword: compact antenna

Search Result 328, Processing Time 0.021 seconds

A Study on Dual Circular Polarized Patch Antenna with Compact Size (소형 이중 원형편파 패치안테나에 관한 연구)

  • Yun, Gi-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1537-1543
    • /
    • 2010
  • This paper describes a compact microstrip antenna with dual polarization characteristics. The antenna, receiving both a left-hand circularly polarized(LHCP) wave and a right-hand circularly polarized(RHCP) wave, can be used for a polarization diversity. A diamond-shaped patch with internal empty room is designed for impedance matching as well as size reduction. And slots are added around feeding point to improve input matching. The proposed antenna has been applied to GPS(global positioning system), operating at 1.57GHz. And, the proposed idea has been verified and estimated by simulation. The measurement results show that it has VSWR 2:1 bandwidth of 83MHz, 3dB axial bandwidth of about 58MHz, 3dB beamwidth of 90degree, and gain of 0dBi, respectively, for RHCP. Also, it has similar performances for LHCP.

Design of Microstrip-fed Dual Band Monopole Antenna for WLAN (마이크로스트립 급전 무선랜용 이중대역 모노폴 안테나 설계)

  • Nam, Ju-Yeol;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.490-495
    • /
    • 2016
  • In the present study, a microstrip-fed monopole antenna is proposed for wireless local area network (WLAN) operations which cover dual band of 2.4 GHz (2.4 ~ 2.484 GHz) and 5 GHz (5.15 ~ 5.825 GHz). In order to obtain its compact structure and good omnidirectional radiation patterns, a modified inverted L-shaped slot separated from ground for impedance matching in 5 GHz band is etched on 2.4 GHz printed monopole antenna. The proposed antenna is designed and fabricated on a FR4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of $30{\times}45mm^2$. The measured impedance bandwidths (${\mid}S_{11}{\mid}{\leq}-10dB$) of fabricated antenna are 270 MHz (2.22 ~ 2.48 GHz) in 2.4 GHz band and 890 MHz (5.08 ~ 5.97 GHz) in 5 GHz band respectively. In particular, high gain of more than about 4 dBi and good omnidirectional radiation patterns have been observed over the entire frequency band of interest.

Triple-Band Compact Chip Antenna Using Stacked Meander Line Structure for GPS/PCS/Satellite DMB Services (적층 미엔더 라인 구조를 이용한 GPS/PCS/위성 DMB 삼중 대역 소형 칩 안테나)

  • Kim Ho-Yong;Kim Young-Do;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.211-216
    • /
    • 2005
  • In this paper, GPS/PCS/Satellite DMB compact chip antenna is designed using stacked meander line for mobile communication handset. The fabricated antenna size is $12.52mm\times19.95\times1.05mm$. The coupling is adjusted by via and arrangement among meander lines to improve FR(Frequency Ratio) and return-loss. The fabricated antenna achieve triple-band. The resonance frequencies are 1.696 GHz, 1.888 GHz and 2.680 GHz. The impedance bandwidths are 150 MHz, 120 MHz and 60 MHz. The maximum gains of antenna are 0.08 dBi, 1.70 dBi and -1.27 dBi at resonance frequencies.

Compact Range Detection Sensor by Oscillation Frequency Deviation of an Active Antenna (능동안테나의 발진주파수 편이에 의한 소형 거리 센서)

  • Yun, Gi-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.528-535
    • /
    • 2011
  • In this paper, a compact doppler sensor with oscillator type active antenna operating at 2.4GHz frequency band is proposed to measure the distance to a moving object. The oscillation frequency is shifted depending on approaching of the object, and a detection circuit discriminates the frequency deviation. The active antenna has been designed and simulated. The prototype fabricated has a small circular disk type of diameter 30mm and height 4.2mm. As for antenna performance, broadside radiation pattern with beamwidth of $120^{\circ}$ and oscillation frequency of 2.35GHz has been measured. Test results as a range sensor shows that signal voltage of about 240mV has been obtained for conducting plate moving 1 meter away from the sensor. And, signal voltage has been linearly increased to the ground from 5m height by free-falling the sensor.

Compact 0th Order Antenna for 2.4 GHz ISM Band (2.4 GHz ISM대역용 소형 0차 공진 안테나)

  • Do, Sang-In;Yoo, Jin-Ha;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • In the present study, compact $0^{th}$ order resonant antenna for 2.4 GHz ISM frequency band is newly proposed. In case of wireless communication systems such as wi-fi, bluetooth and Zigbee, antennas with omni-directional radiation pattern are necessary because of the demands for uniformly received electric field strength without variation for direction. It is well-known that $0^{th}$ order resonant antennas are not only advantageous for miniaturization but also have advantage of maintaining omni-directional radiation pattern. The proposed antenna is composed of two-element array in which the size of unit element should be smaller than ${\lambda}/4$ correspondent to the resonant length of typical monopole antennas The proposed antenna which is placed at middle and upper side of PCB with $50{\times}50mm^2$ size is designed and fabricated within limited space of $8{\times}5mm^2$. The measured impedance bandwidth ($S_{11}{\leq}-10dB$) is about 100 MHz (2.4~2.5 GHz) which corresponds to quite wide bandwidth in comparison with the antenna size, and also the measured peak gain over the passband is more than 3 dBi which is thought to be slightly wider than the other $0^{th}$ order resonant antenna.

Design of Compact Microstrip Patch Antenna for Short Distance WLAN (근거리 WLAN을 위한 광대역 마이크로스트립 패치 안테나 설계)

  • Choi, Yong-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • In this paper, we designed a multiband monopole antenna for next-generation WLAN system. In conventional WLAN system, UWB antennas were used together, and, because the radiation occurs in different parts depending on the antenna structure, it has the disadvantage of having an unstable impulse response characteristic due to dispersion characteristics. Although a UWB antenna that has suitable radiation pattern for WLAN band, it does not have good impedance matching and has severe echo. Therefore, in this paper, a monopole antenna was designed by using CPW power feed so that various impedances can be easily implemented when designing an antenna and more parameters can be derived that can be used for design for optimal performance.

A Study on the Small Chip Meander Antenna for Dual-frequency Operation (이중공진 소형 칩 Meander 안테나에 관한 연구)

  • 김현준;권세웅;심성훈;강종윤;윤석진;김현재;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.633-640
    • /
    • 2002
  • In this paper, the small chip meander antenna for dual-frequency operation is presented. The proposed chip meander antennas was fabricated by the ceramic chip using LTCC-MLC process. It is a novel compact dual-frequency design using a meandered patch that achieves more degrees of freedom for adjusting dual-frequency operation and the size reduction with narrow frequency ratio. And it is proposed that the 3D structure for additional size reduction of the meander antenna. The size reduction of the 3D meander antenna is as large as 50 % as compared to the design for dual-frequency operation not using 3D structure. It is observed that the principle of dual-frequency operation through current distribution, return loss and radiation pattern.

Design of Dual frequency Inverted-F Antenna with Spur Line (스퍼 라인을 이용한 이중 주파수 역 F형 안테나의 설계)

  • 허문만;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.702-708
    • /
    • 2002
  • In this paper, we design the dual frequency antenna that could easily determine two operation frequencies by its inverted-F antenna structure and spur line length. The spur line is applied to the inverted-F antenna, in order to dual operation characteristics in PCS and cellular frequencies. It has designed by using the IE3D commercial software based on the moment method. As the designed antenna is fabricated and measured, you can see the results such as the return loss, the input impedance, the radiation patterns, and the gain. The size of this antenna is 40 mm$\times$14 mm$\times$9.4 mm, it is compact enough to use as an intenna. Also, This antenna can be used with cellular and PCS phone of domestic market.

Design of dual-band compact antenna with a deformed ground plane (변형된 접지구조를 갖는 이중대역 소형 안테나 설계)

  • Chae, Gyoo-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.815-820
    • /
    • 2007
  • In this paper, a small internal antenna for dual-band(RFID, PCS) applications is presented. The proposed antenna is a basic PIFA type and has a deformed ground plane under the main radiator. The modified ground plane is spreading the surface current and the antenna miniaturization can be achieved due to the coupling effect. The antenna is manufactured according to the simulation results and the resonance frequency move to low frequency band by 150MHz. And the surface current on the radiator and ground plane is evenly distributed so our suggested antenna can be used for better SAR and HAC performance.

  • PDF

A Compact Two-Wire Helical Antenna with an Open Stub for a T-DMB Antenna of Mobile Devices (단말기 T-DMB용 안테나로 사용될 수 있는 Open Stub를 가지는 소형 Two-Wire Helical 안테나)

  • Lee, Dong-Hyun;Park, Se-Hyun;Kim, Young-Eil;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.151-157
    • /
    • 2007
  • We have presented a compact two-wire helical antenna adopted an open stub in opposite to a feeding point, which is for a T-DMB antenna of mobile devices. By adjusting the length of the open stub or pasting a dielectric material on the open stub, the input impedance around 200 MHz, bands of the T-DMB, can be easily control, even though the total height of the antenna is less than 8 cm(0.053 $\lambda$ at 200 MHz). The operating mechanism of the antenna is explained by using equivalent circuits of two modes, an unbalanced mode and a balanced mode. Based on the analysis of the equivalent circuits, the effects of using the open stub are validated. Several proposed antennas have been fabricated and measured. One of the fabricated antennas has -10 dB impedance bandwidth of $196{\sim}204$ MHz(8 MHz) whose value covers one channel of the T-DMB(6 MHz). The measured $S_{21}$ of the antenna is -38.6 dB which is about 17 dB higher than that of a monopole antenna whose height is same with the proposed antenna.