• Title/Summary/Keyword: compact antenna

Search Result 327, Processing Time 0.028 seconds

More compact rectangular two stepped slot antenna for Wi-Fi dual band application (더욱 소형화된 와이파이 이중대역용 직사각형 2단 계단식 슬롯 안테나)

  • Kim, Min-woo;Lee, Yeong-min;Lee, Hee-jae;Lee, Young-soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.17-23
    • /
    • 2021
  • In the present study, a more compact dual-band slot antenna is newly proposed for Wi-Fi application. The proposed antenna is composed of rectangular two stepped slot with open end which can generate standing wave resonance at dual frequency bands and L-type microstrip feed line. The measured impedance bandwidths are 50 MHz(2.412 ~ 2.470 GHz) at low frequency band and 452 MHz(5.451 ~ 5.903 GHz) at high frequency band respectiviely. Furthermore its size of 14 × 21 mm2 is reduced by 30% compared to the size of 20 × 21 mm2 of a conventional similar compact slot antenna. It has the omni-directional radiation pattern characteristics of a typical dipole antenna on the H-Plane, so it is suitable for commercial wireless network applications such as Wi-Fi.

Small Broadband Phased Array Antenna with Compact Phase-Shift Circuits (간결한 위상 변위 회로를 갖는 소형 광대역 위상 배열 안테나)

  • 한상민;권구형;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1071-1078
    • /
    • 2003
  • In this paper, the planar, compact, and broadband phased array antenna system for IMT-2000 applications has been investigated. Two methods far designing a low-cost and low-complex beam-farming network are proposed. First, a new compact and broadband phase shifter with continuously controlled phase bits is designed by using parallel coupled lines. Second, its equivalent phase delay line is suggested to be capable of replacing the complex phase shifter with a reference phase bit on a phased array antenna. For the purpose of achieving the broadband system, in addition to the broadband phase shifter, a wide-slot antenna with a ground reflector is utilized as an element antenna. Therefore, the phased array antenna system has achieved compact size, broad bandwidth, and wide steering angle, although it has low complexity and low fabrication cost. The 3${\times}$1 phased array antenna system has a compact size of 1.6 λ${\times}$ l.6 λ, which is the sufficient ground plane of the wide-slot antenna. Experimental results present that the S$\_$11/ has less than 15 dB within the band and its radiation patterns on an E-plane have the capability of steering an antenna beam from -29$^{\circ}$to +30$^{\circ}$.

Compact Dual-Band MIMO Antenna with High Isolation Performance (소형 고 격리도 듀얼 밴드 MIMO 안테나)

  • Yeom, In-Su;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.865-871
    • /
    • 2010
  • A compact dual-band(IEEE 802.11b: 2.4~2.5 GHz, 11a: 5.15~5.825 GHz) 2-channel MIMO antenna for PMP applications is presented. The proposed antenna is composed of a planar inverted F-shape antenna(PIFA) operating at 2 GHz band and a loop antenna operating at 5 GHz band. The proposed antenna is orthogonally arranged at the edge of the ground plane for polarization and pattern diversities with excellent isolation characteristics. The two PIFA antennas operating 2 GHz have connecting line($\lambda_g$/4) face to the feed point for high isolation and low correlation at 2 GHz band. The two loop antennas connected each other in the bottom side to improve the isolation at 5 GHz band. The proposed antenna has a sufficient gain in WLAN service band and is compact sized for the portable media player (PMP) applications.

A Dual-Band Compact Folded Patch Antenna (이중 대역 소형 평면 패치 안테나)

  • 김태영;정종호;박동국;박익모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • In this paper we proposed a novel dual-band compact folded patch antenna with the same linear polarizations and high isolation characteristic between the two frequency range. The antenna is loaded with a high permittivity dielectric material in order to reduce the antenna size and open circuit stubs are used in order to broaden the bandwidth. The fractional bandwidths of the optimized antenna with demensions 4 mm${\times}$3 mm${\times}$5 mm are 3.0 % at 5.6 GHz band and 2.8 % at 5.8 GHz band, respectively. The isolation characteristic between the two ports is less than -26 dB within the operating frequency range.

Dual-band Compact CPW-fed Slot Antenna for WLAN applications (WLAN 시스템용 이중 대역 CPW 소형 슬롯 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In this paper, the compact CPW-fed slot antenna for WLAN applications is proposed. While the proposed antenna with size of only $20{\times}18{\times}1mm^3$ is consisted of double stub and folded slot, the antenna for 2.4 GHz band and 5 GHz band is designed and fabricated with optimized parameters obtained by simulation. Proposed antenna is fabricated with FR-4 substrate to the thickness of 1.0 mm. By obtaining the measured return loss level of < -10 dB at dual-band, we showed that it is operated as antenna for WLAN applications, and then it is also expected to be usable as antenna for RFID.

Design of Optimized Two Baseline Waveguide Slot Array Antenna for Interferometric Radar Altimeter (기저선이 최적화된 간섭계 레이다 고도계용 도파관 슬롯 배열 안테나 설계)

  • Yoon, Nanae;Kim, Jihyung;Kim, Jinsu;Jang, Jonghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • In this paper, the compact waveguide slot array antenna for interferometric radar altimeter is proposed. The proposed antenna structure consist of corrugation structure which is applied between each channel to improve isolation, three-channel waveguide slot array antenna and feeder. In addition, to reduce the occurrence of phase ambiguity, the baseline spacing of the three-channel antenna is analyzed and the results are applied to the design. For compact design, reduced height and SMP connector structure are used and the dip brazing method which is the conjugation method after dipping to flux is used for the fabrication of the lightweight antenna. The measurement result of the proposed antenna shows less than 1.41 : 1 (VSWR) and 48.3 dBc (isolation). The antenna gain is higher than 20.2 dBi and the side lobe levels are lower than 18.8 dB (vertical plane) and 10.0 dB (horizontal plane).

A Compact Active Channel Module Design for Active Phased Array Antenna System

  • Jung, Young-Bae
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.393-397
    • /
    • 2013
  • This paper introduces the T/RX combined compact active channel module which is a key unit of the active phased array antenna(APAA) system. This module is mainly compoased of two parts for TX and RX fabricated on both sides of the active module for size reduction. The TX-part is primarily composed of a 3-stage amplifier, a microstrip phase shifter, a thermal compensation and a power detection circuit. The RX-part is composed of LNAs a microstrip phase shifter and BPFs for TX power rejection. Using the proposed design structure we can realized a compact active channel module having high performance.

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

  • Shi, Ya Wei;Xiong, Ling;Chen, Meng Gang
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • A miniaturized triple-band antenna suitable for wireless USB dongle applications is proposed and investigated in this paper. The presented antenna, simply consisting of a circular-arc-shaped stub, an L-shaped stub, a microstrip feed line, and a rectangular ground plane has a compact size of $16mm{\times}38.5mm$ and is capable of generating three separate resonant modes with very good impedance matching. The measurement results show that the antenna has several impedance bandwidths for S11 ${\leq}$ -10 dB of 260 MHz (2.24 GHz to 2.5 GHz), 320 MHz (3.4 GHz to 3.72 GHz), and 990 MHz (5.1 GHz to 6.09 GHz), which can be applied to both 2.4/5.2/5.8 GHz WLAN bands and 3.5/5.5 GHz WiMAX bands. Moreover, nearly-omni-directional radiation patterns and stable gain across the operating bands can be obtained.

Compact LTCC Patch Antenna Integrating a Wideband Vertical Transition for millimeter-wave SoP Applications (밀리미터파 SoP 응용을 위해 광대역 수직천이를 집적한 초소형 LTCC 팻치안테나)

  • Lee, Young Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • In this work, a compact patch antenna based on a low temperature cofired ceramic (LTCC) has been presented for V-band system-on-package (SoP) applications. In order to integrate it with transceiver block, a waveguide (W/G) to embedded microstrip line (eMSL) vertical transition was designed using slot-fed double stacked patch antennas for easy assembly and wide bandwidth. The $2{\times}2$ patch antenna integrating the transition was designed and fabricated in the 5-layer LTCC dielectrics. The whole size of the fabricated antenna including the $2{\times}2$ patches, transition and W/G was $20{\times}24{\times}5.39mm^3$. The fabricated antenna has achieved a 10 dB impedance bandwidth of 2.45 GHz from 61 to 63.45 GHz.

A Compact Triple Band Antenna for a Wireless USB Dongle

  • Lee, Seung-Hyun;Sung, Young-Je
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.185-188
    • /
    • 2012
  • A compact monopole antenna possessing triple resonance ($f_1$, $f_2$, $f_3$) characteristics for (USB) dongle applications is presented. The resonance characteristic $f_1$ is determined by the overall length of the antenna. The monopole antenna acts as the main radiator for $f_3$ as well as the coupling feeding structure for the parasitic resonators in $f_1$, $f_2$. The resonance characteristic $f_2$ is achieved by a combination of the capacitance formed by the coupling between the top and bottom parasitic substrate resonators and the inductance generated by a via bridging the two parasitic resonators.