• Title/Summary/Keyword: compact MIMO

Search Result 23, Processing Time 0.019 seconds

Reducing the Interference in Compact MIMO Antennas of CRLH-TL-Based Broadside-Capacitive and Slot Couplings

  • Jang, Kyeongnam;Kahng, Sungtek;Yang, Inkyu;Kim, Hyeongseok;Wu, Qun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.997-1001
    • /
    • 2014
  • In this paper, the interference in small MIMO antennas having two identical composite right- and left-handed transmission-line(CRLH-TL)-based radiating elements is remarkably decreased. The radiating element has the broadside-capacitive coupling as well as slots to be equivalent to the CRLH-TL to prevent the size from increasing for an LTE high band. The suspended line bridging the two radiating elements is optimized to lower the interference between them down to -23 dB, while the overall MIMO antenna system is compact and its antenna performance is acceptable. The design is tested for 2.5 GHz.

A Compact UWB and Bluetooth Slot Antenna for MIMO/Diversity Applications

  • Gao, Peng;He, Shuang
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.309-312
    • /
    • 2014
  • A novel compact pattern diversity slot antenna for ultra-wideband (UWB) and Bluetooth applications is presented. This antenna consists of two modified coplanar waveguides that feed staircase-shaped radiating elements, wherein two different fork-like stubs are placed at the $45{\circ}$ axis. The measured results show that this proposed antenna operates from 2.3 GHz to 12.5 GHz, covering Bluetooth, WLAN, WiMAX, and UWB. The performance of radiation patterns and the corresponding envelope correlation coefficient prove this antenna is suitable for MIMO/diversity systems. Also, the antenna's compact size makes it a good candidate for portable devices.

Implementation of Multi-Beam Pattern Compact MIMO Antenna based on Switched Parasitic Antenna (SPA 기반 다중 빔 패턴 고집적 안테나 개발)

  • Yoon, Sang-Ok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.219-224
    • /
    • 2020
  • In this paper, we studied the compact MIMO(: Multi-Input Multi-Output) antenna for multi-beam pattern generation and control in narrow space. The characteristics and performance of the basic Dipole SPA and Monopole SPA structures are shown. We implemented a monopole SPA antenna and measured its performance in an 802.11g system. When the average transmission rate was measured using the SPA antenna, the SPA antenna improved the best performance by 8.7 times compared to commercial antenna.

Design of a Compact MIMO Antenna for Smart Glasses (스마트 안경용 초소형 MIMO 안테나 설계)

  • Choi, Sehwan;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.351-354
    • /
    • 2017
  • In this paper, a compact MIMO(Multiple Input Multiple Output) antenna for smart glasses is proposed. The proposed MIMO antenna is designed using T-shaped isolator inserted between two closely located Inverted-F Antenna(IFA) and using two slots located in the ground for isolation enhancement and impedance matching characteristic. The proposed antenna has only the overall dimensions of $35mm{\times}9mm{\times}0.8mm$ and operates in the 2.4 GHz industrial, scientific, and medical(ISM) band. To verify human body effect, the phantom is used for antenna performance. The measured specific absorption rate(SAR) value is 1.38 W/kg with an input power of 18 dBm. The performance of the proposed antenna is compared with that of previous works for verification.

Compact Dual-Band MIMO Antenna with High Isolation Performance (소형 고 격리도 듀얼 밴드 MIMO 안테나)

  • Yeom, In-Su;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.865-871
    • /
    • 2010
  • A compact dual-band(IEEE 802.11b: 2.4~2.5 GHz, 11a: 5.15~5.825 GHz) 2-channel MIMO antenna for PMP applications is presented. The proposed antenna is composed of a planar inverted F-shape antenna(PIFA) operating at 2 GHz band and a loop antenna operating at 5 GHz band. The proposed antenna is orthogonally arranged at the edge of the ground plane for polarization and pattern diversities with excellent isolation characteristics. The two PIFA antennas operating 2 GHz have connecting line($\lambda_g$/4) face to the feed point for high isolation and low correlation at 2 GHz band. The two loop antennas connected each other in the bottom side to improve the isolation at 5 GHz band. The proposed antenna has a sufficient gain in WLAN service band and is compact sized for the portable media player (PMP) applications.

MIMO receiver using beam pattern switching (수신 빔패턴 스위칭을 이용한 MIMO 수신기)

  • Jo, Gweon-Do;Bae, Hyoung-Oh;Oh, Jung-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.803-805
    • /
    • 2015
  • MIMO receiver for multiplexing gain brings about antenna volume issue to which beam pattern switching scheme shall be one of the solutions. This scheme has been studied mainly in theory. This paper presents the test results and performance analysis of 2x2 MIMO receiver we implemented by using beam pattern switching.

  • PDF

Co-located and space-shared multiple-input multiple-output antenna module and its applications in 12 × 12 multiple-input multiple-output systems

  • Longyue Qu;Haiyan Piao;Guohui Dong
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.203-212
    • /
    • 2023
  • In this study, we developed a co-located and space-shared multiple-input multiple-output (MIMO) antenna module with a modular design and high integration level. The proposed antenna pair includes a half-wavelength loop antenna and a dipole-type antenna printed on the front and back sides of a compact modular board. Owing to their modal orthogonality, these two independent antenna elements are highly self-isolated and free of additional decoupling components, even though they are assembled at the same location and within the same space. Thus, the proposed antenna is attractive in 5G MIMO systems. Furthermore, the proposed co-located and space-shared MIMO antenna module was employed in a 5G smartphone to verify their radiation and diversity performances. A 12 × 12 MIMO antenna system was simulated and fabricated using the proposed module. Based on the results, the proposed module can be employed in large-scale MIMO antenna systems for current and future terminal devices owing to its high integration, compactness, simple implementation, and inherent isolation.

Compact MIMO Antenna with Wide-Band Isolation and Ground Mode Resonance for Smart Glasses (그라운드 모드의 공진을 이용한 광대역 격리도를 가지는 스마트 안경용 소형 MIMO 안테나)

  • Ryu, Jongin;Kim, Hyeongdong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.817-820
    • /
    • 2018
  • In this letter, a compact multiple-input multiple-output(MIMO) antenna design for a 2.4 GHz wireless local area network(WLAN) band is proposed for use in smart glasses. To miniaturize the MIMO antenna system, a ground plane is employed within the antenna and a T-shaped ground is proposed. To achieve wideband isolation, dual resonance is formed by the ground mode. One resonance is created by the T-shaped ground and the second resonance is created by adding a slot and a capacitor between the two feed lines. The measurements show that the reflection coefficient characteristic was less than -5.1 dB, whereas the isolation obtained was less than -20 dB. The diversity performance was evaluated using the measured two-dimensional radiation patterns, and the envelope correlation coefficient(ECC) values achieved in the target band(2.4~2.5 GHz) were less than 0.1.

Analysis of Single-RF MIMO Receiver with Beam-Switching Antenna

  • Gwak, Donghyuk;Sohn, Illsoo;Lee, Seung Hwan
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.647-656
    • /
    • 2015
  • This paper proposes a single-RF MIMO receiver that adopts a beam-switching antenna (BSA) instead of a conventional array antenna. The beauty of the proposed single-RF MIMO receiver with BSA is that it can be deployed in a very small physical space while achieving a full spatial multiplexing gain. Our analysis has revealed that the use of a BSA inevitably results in the spectrum spreading effect at the RF output, which in turn causes an SNR decrease and adjacent channel interference (ACI). Two novel receiver techniques are proposed to mitigate the issues of redundant sub-band suppression and ACI avoidance. Numerical analysis results verify the performance improvement from the proposed receiver techniques.

An Eight-Element Compact Low-Profile Planar MIMO Antenna Using LC Resonance with High Isolation

  • Kwon, DukSoo;Lee, Soo-Ji;Kim, Jin-Woo;Ahn, ByungKuon;Yu, Jong-Won;Lee, Wang-Sang
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.194-197
    • /
    • 2016
  • An eight-element compact low-profile multi-input multi-output (MIMO) antenna is proposed for wireless local area network (WLAN) mobile applications. The proposed antenna consists of eight inverted-F antennas with an isolation-enhanced structure. By inserting the isolation-enhanced structure between the antenna elements, the slot and capacitor pair generates additional resonant frequency and decreases mutual coupling between the antenna elements. The overall size of the proposed antenna is only $33mm{\times}33mm$, which is integrated into an area of just $0.5{\lambda}{\times}0.5{\lambda}$. The proposed antenna meets 5-GHz WLAN standards with an operation bandwidth of 4.86 - 5.27 GHz and achieves an isolation of approximately 30 dB at 5 GHz. The simulated and measured results for the proposed antenna are presented and compared.