With the deepening of population aging, pension has become an urgent problem in most countries. Community smart pension can effectively resolve the problem of traditional pension, as well as meet the personalized and multi-level needs of the elderly. To predict the pension intention of the elderly in the community more accurately, this paper uses the decision tree classification method to classify the pension data. After missing value processing, normalization, discretization and data specification, the discretized sample data set is obtained. Then, by comparing the information gain and information gain rate of sample data features, the feature ranking is determined, and the C4.5 decision tree model is established. The model performs well in accuracy, precision, recall, AUC and other indicators under the condition of 10-fold cross-validation, and the precision was 89.5%, which can provide the certain basis for government decision-making.
In view of the deficiencies of existing weighted similarity indexes, a hierarchical clustering method initialize-expand-merge (IEM) is proposed based on the similarity of common neighbors for community discovery in weighted networks. Firstly, the similarity of the node pair is defined based on the attributes of their common neighbors. Secondly, the most closely related nodes are fast clustered according to their similarity to form initial communities and expand the communities. Finally, communities are merged through maximizing the modularity so as to optimize division results. Experiments are carried out on many weighted networks, which have verified the effectiveness of the proposed algorithm. And results show that IEM is superior to weighted common neighbor (CN), weighted Adamic-Adar (AA) and weighted resources allocation (RA) when using the weighted modularity as evaluation index. Moreover, the proposed algorithm can achieve more reasonable community division for weighted networks compared with cluster-recluster-merge-algorithm (CRMA) algorithm.
Many methods of discovering social networking communities or clustering of features are based on the network structure or the content network. This paper proposes a community discovery method based on topic models using a time factor and an unsupervised clustering method. Online community discovery enables organizations and businesses to thoroughly understand the trend in users' interests in their products and services. In addition, an insight into customer experience on social networks is a tremendous competitive advantage in this era of ecommerce and Internet development. The objective of this work is to find clusters (communities) such that each cluster's nodes contain topics and individuals having similarities in the attribute space. In terms of social media analytics, the method seeks communities whose members have similar features. The method is experimented with and evaluated using a Vietnamese corpus of comments and messages collected on social networks and ecommerce sites in various sectors from 2016 to 2019. The experimental results demonstrate the effectiveness of the proposed method over other methods.
N-screen 은 여러 단말을 통한 콘텐츠 소비형 서비스로써 이용자 환경과 요구사항에 반응하여 연속성을 가지고 이용자가 원하는 단말을 통해 제공될 수 있다. 자신이 가지고 있는 다양한 단말만 아니라 인증을 거친 다른 사용자가 가진 단말에도 N-screen 을 제공할 수 있다. 서로 다른 서비스 이용자 간 N-screen 을 제공하기 위한 플랫폼으로써 웹 플랫폼을 이용할 수 있다. 웹은 N-screen 을 제공하기 위해 가장 우선시 되는 요구사항인 플랫폼의 통합을 이끌어 낼 수 있으며 서비스 플랫폼과 협업을 통해 서비스 이용자의 요구사항을 만족시키고 동시에 Community 융합을 통해 전혀 새로운 서비스로 제공될 수 있다. 이에 본 논문에서는 웹 기반 N-screen 환경에서 Community 서비스 제공을 위한 서비스 제어기능 모델을 제안하고 그에 따른 서비스 시나리오를 설명한다.
Kim, Taehyeon;Woo, Seunghee;Kim, Jeongmi;Choi, Haechul
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.325-327
/
2021
코로나19 전염병 예방을 위한 공공장소에서의 마스크 착용이 의무화되고 있다. 그러나 사람들이 다양한 이유로 마스크를 제대로 착용하지 않아 감염에 노출되는 위험이 발생하고 있다. 이러한 방역 문제를 해결하고 본 논문은 영상을 인식하여 마스크를 쓴 얼굴과 쓰지 않은 얼굴을 검출하는 방식을 제안한다. 제안 방법은 마스크 착용자와 비착용자 얼굴 영상을 딥러닝 기반의 YOLO 네트워크로 학습하여, 마스크 착용 유무를 판별한다. 동일 YOLO 네트워크에 대해 여러가지 조건으로 학습을 수행하고, 학습에 사용되지 않은 검증 데이터를 이용해 정확도가 가장 높은 네트워크의 가중치를 선택하였다. 실험결과, 마스크 착용자는 67.2%, 미착용자는 39.8%의 판별 정확도를 보였다. 미착용자에 대해 낮은 정확도를 보인 이유는 학습 데이터의 부족으로 판단되며, 이를 보완하기 위하여 더 많은 학습데이터를 제작하여 성능을 개선시키고자 한다.
The purpose of this study was to develop the community programs of multihousing in Korea through evaluating and analyzing the actual conditions of community in multihousing in U.S.A. This study was conducted by using a field survey and questionaire at the 2 multihousing complexes located in the City of Blacksburg, Virginia, U.S.A. The major findings were as follows: 1) There was a variety of community programs and facilities, such as a monthly newsletter which allowed information to be exchanged among all residents. The programs also provided news on events for the children, teenagers, college students, adults and seniors. These events were held at the club house or pond area. 2) The average degree of satisfaction of these programs and facilities was high. 3) Korea need to follow the example of the U.S.A by i) providing a monthly newsletter periodically to exchange information ii) offering a variety of community programs iii) providing programs regarding district bureau of public administration, kindergarten service, telecommunications office and holding service for package, registered mail, drycleaning, etc.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.64-66
/
2005
한국과학기술정보원(KISTI) 바이오인포매틱스센터(CCBB)에서는 생명과학 관련 주제별 Open Archiving Community의 구성과 운영을 통한 연구자들 간의 정보교환을 유도하고, 더불어 논문뿐만 아니라 세미나, 연구노트 등의 최신의 연구 정보를 공유할 수 있도록 생명과학 Open Archiving Community 시스템을 구축하여 운영하려고 한다. 본 community에서 수집, 구축, 서비스할 점보의 종류는 아티클, 학위논문 연구보고서, 발표자료, 연구노트, 실험데이터, 전자자료 등이다. 그러므로, 전 세계적으로 많이 활용되고 있는 Dublin-core, Marc21, MODS를 비교 분석하여 MODS 메타데이터를 기준으로 아티클과 같은 문헌정보 뿐만 아니라 실험결과, 연구노트 등의 비문헌정보도 유연성 있게 적용할 수 있는 생명과학 관련 주제별 Open Archiving Community를 위한 메타데이터 스키마를 설계하였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.11a
/
pp.183-192
/
2005
Recently, community computing has been proposed for group formation and group decision-making. However, legacy community computing systems do not support group need identification for ad hoc group formation, which would be one of key features of ubiquitous decision support systems and services. Hence, this paper aims to provide a multi-agent based methodology to enable nomadic community computing which supports ad hoc need identification and group formation. Focusing on supporting group decision-making of relatively small sized multiple individual in a community, the methodology copes with the following three characteristics: (1) ad hoc group formation, (2) context-aware group need identification, and (3) using mobile devices working in- and out-doors. NAMA-US, an RFID-based prototype system, has been developed to show the feasibility of the idea proposed in this paper.
A syntaxonomical study about the vegetation of ruined salt field in Chonnam province was carried out and its soil properties were also determined. This study was accomplished by the methods of Mueller-Dombois and Ellenberg. This study was designed to clarify the syntaxonomical and synecological characteristics of the vegetation of ruined salt field in Chonnam province. The annual herbaceous halophyte communities of ruined salt field in Chonnam province were consisted of 5 communities: Salicornia herbacea community, Sueada japonica community, Sueada maritima community, Atriplex gmelini community, Spergularia marina community. And the perennial herbaceous halophyte communities of ruined salt field in Chonnam province were consisted of 3 communities: Aster tripolium community, Carex scabrifolia community, Phragmites communis community. The subsidiary knowledges of this study will make it possible to accumulate information on the distribution pattern of coastal salt marsh vegetation, and also will provide practical information for conservation of coastal ecosystems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.