• Title/Summary/Keyword: communication error-rate

Search Result 1,291, Processing Time 0.041 seconds

Performance Analysis on Error Correction Scheme for Wireless Sensor Network over Node-to-node Interference

  • Choi, Sang-Min;Moon, Byung-Hyun;Ryu, Jeong-Tak;Park, Se-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 2006
  • In this paper, we study a problem of providing reliable data transmission in wireless sensor network(WSN). A system with forward error correction9FEC) can provide an objective reliability while using less transmission power than a system without FEC. We propose the use of LDPC codes of various code rate (0.53, 0.81, 0.91) of FEC for WSN. Node-node-node interference is considered in the simulation in addition to AWGN in the channel. It is shown that the rate of 0.91 LDPC coded system obtained 7dB gain in signal to noise ratio over a system without FEC.

  • PDF

Slotted CDMA_ALOHA Protocol with Hybrid ARQ in Wireless Communication Network

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.194-199
    • /
    • 2007
  • In this paper, a slotted CDMA_ALOHA protocol with hybrid ARQ is proposed for the wireless CDMA communication networks. The proposed protocol combines the characteristics of the slotted ALOHA, CDMA, and the hybrid ARQ, in order to increase the throughput by reducing the number of retransmissions when the channel experiences heavy traffic. The main feature of the proposed protocol is the utilization of the forward error correction capability to correct errors that appear after the CDMA dispreading of the packets. The base station does not need to ask so often for retransmission of erroneous packets. It will request for retransmission only when the FEC capability is exceeded. The performance of the proposed protocol is analyzed by considering the packet collision probability as well as the bit error probability. The numerical results show that the system throughput is closely related to the bit error rate of the wireless link and the FEC coding rate.

The Effect of Communication Distance and Number of Peripheral on Data Error Rate When Transmitting Medical Data Based on Bluetooth Low Energy (저 전력 블루투스 기반으로 의료데이터 전송 시 통신 거리와 연동 장치의 수가 데이터 손실률에 미치는 영향)

  • Park, Young-Sang;Son, ByeongJin;Son, Jaebum;Lee, Hoyul;Jeong, Yoosoo;Song, Chanho;Jung, Euisung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.259-267
    • /
    • 2021
  • Recently, the market for personal health care and medical devices based on Bluetooth Low Energy(BLE) has grown rapidly. BLE is being used in various medical data communication devices based on low power consumption and universal compatibility. However, since data errors occurring in the transmission of medical data can lead to medical accidents, it is necessary to analyze the causes of errors and study methods to reduce data error. In this paper, the minimum communication speed to be used in medical devices was set to at least 800 byte/sec based on the wireless electrocardiography regulations of the Ministry of Food and Drug Safety. And the data loss rate was tested when data was transmitted at a speed higher than 800 byte/sec. The factors that cause communication data error were classified, and the relationship between each factor and the data error rate was analyzed through experiments. When there were two or more activated peripherals connected to the central, data error occurred due to channel hopping and bottleneck, and the data error rate increased in proportion to the communication distance and the number of activated peripherals. Through this experiment, when the BLE is used in a medical device that intermittently transmits biosignal data, the risk of a medical accident is predicted to be low if the number of peripherals is 3 or less. But, it was determined that BLE would not be suitable for the development of a biosignal measuring device that must be continuously transmitted in real time, such as an electrocardiogram.

Performance Analysis of DPSK Optical Communication for LEO-to-Ground Relay Link Via a GEO Satellite

  • Lim, Hyung-Chul;Park, Jong Uk;Choi, Mansoo;Choi, Chul-Sung;Choi, Jae-Dong;Kim, Jongah
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • Satellite optical communication has gained significant attention owing to its many quality features (e.g., a larger bandwidth, license free spectrum, higher data rate, and better security) compared to satellite microwave communication. Various experiments have been performed during many space missions to demonstrate and characterize inter-satellite links, downlinks, and uplinks. Korea has also planned to establish an experimental communication system using a geostationary earth orbit (GEO) satellite and the Geochang station as an optical ground station for low Earth orbit (LEO)-to-ground optical relay links. In this study, the performance of inter-satellite communication links and downlinks was investigated for the new Korean experimental communication system in terms of link margin, bit error rate (BER), and channel capacity. In particular, the performance of the inter-satellite links was analyzed based on the receiving apertures and the transmitting power, while that of the downlink was analyzed in terms of atmospheric turbulence conditions and transmitting power. Finally, we discussed two system parameters of receiving aperture and transmitting power to meet the three criteria of link margin, BER, and channel capacity.

Performance Analysis of an AF Dual-hop FSO Communication System with RF Backup Link

  • Alhamawi, Khaled A.;Altubaishi, Essam S.
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.311-319
    • /
    • 2019
  • A hybrid free-space-optical/radio-frequency (FSO/RF) communication system is considered, with the help of amplify-and-forward (AF) relaying. We consider various weather conditions to investigate their effects on the system's performance. We begin by obtaining the cumulative distribution function and probability density function of the end-to-end signal-to-noise ratio for the AF dual-hop FSO communication system with RF backup link. Then, these results are used to derive closed-form expressions for the outage probability, average bit-error rate, and average ergodic capacity. The results show that the considered system efficiently employs the complementary nature of FSO and RF links, resulting in impressive performance improvements compared to non-hybrid systems.

Effect Analysis of a Authentication Algorithm in IPsec VPN Satellite Communication (IPsec VPN 위성통신에서 인증알고리즘이 미치는 영향 분석)

  • Jeong, Won Ho;Hwang, Lan-Mi;Yeo, Bong-Gu;Kim, Ki-Hong;Park, Sang-Hyun;Yang, Sang-Woon;Lim, Jeong-Seok;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.147-154
    • /
    • 2015
  • Satellite broadcasting networks, like if you have if you have just received information that everyone must bring the required security attributes this earth should be done as encryption. In this paper, a satellite communication network AH additional security header in transport mode IPsec VPN by applying the SHA-256 and MD-5 authentication algorithm to authenticate the data portion Error rate and analyze the BER and Throughput. First, to generate a normal IP packet added to IPsec transport mode security header AH were constructed internal authentication data by applying the SHA-256 and MD-5 algorithm. Channel coder was applied to the Rate Compatible Punctured Turbo Codes, packet retransmission scheme Hybrid-ARQ Type-II and Type-III were used. Modulation method was applied to the BPSK, the wireless channel Markov channel (Rician 80%, Rayleigh 20% and Rician 90%, Rayleigh 10%) as an authentication algorithm according to the satellite channel state analyzed how they affect the error rate and Throughput.

The Performance Experiments on the Tactical Data Communication over the Legacy Radio Systems (기존 전술 무전기를 이용한 전술 데이터 통신 성능 실험)

  • Sim, Dong-Sub;Kang, Kyeong-Sung;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.243-251
    • /
    • 2010
  • The military has been putting great efforts into applying data communication on existing voice communication systems being used in NCW(Network Centric Warfare). Data communication will be an effective choice in one of many effort to yield a minimum kill chain, comparing to legacy voice communications, when tactical units conduct their missions. However, the required budget will be enormous, in case of the replacement of a lot of legacy communication systems with new one. As a cost-effective alternative, the tactical data communication systems using the conventional radio systems instead of the development of new radio systems has been proposed. It is mandatory, though, to ensure QoS while maintaining data communication by making use of legacy radio systems already in use. This paper focuses on the performance issues experimented and analyzed for tactical data communication through the legacy radio systems as the first step towards guaranteed QoS. We have conducted various experiments such as the transmission error rate on certain tactical messages, performance evaluation of redundant transfers, the relationship between the transmission frame size and rate of error, the identification of error points in the transmission frame, and techniques to reduce the errors in both hopping and non-hopping modes. As a result of the performance experiments, The adaptive communication module which decides the redundant transmission or the Forward Error Correction(FEC) technique by analyzing channel status and current transmission status(hopping/non-hopping) of the legacy radio should be designed. the FEC technique in non-hopping, and the redundant transmission technique in hopping mode was recommended from the result of experiment with the frame size is 20bytes in non-hopping and 10Bytes frame size in hopping mode.

Adaptive Error Control Based on Traffic Type and Channel Error Rate in Wireless ATM (무선 ATM에서의 트래픽 형태 및 채널 오율에 기반한 적응 오류 제어)

  • 김영웅;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10A
    • /
    • pp.1532-1538
    • /
    • 1999
  • In general, because error rate of wireless link is higher than that of wired link, DLC layer protocol for wired network with low error rate is not proper for wireless environments. In addition, the conventional DLC layer protocol for wireless network is optimized for the low-speed data service, so it is difficult to use conventional DLC protocol in the current mobile communication environments handing high-speed and multimedia services. Therefore, a DLC layer protocol that is suitable to current wireless communication environments is required. In this paper, we propose a novel error control scheme that supports a variety of traffic attribute and is applicable to high-speed and multimedia data service in WATM. The proposed scheme provides enhanced throughput performance for real-time traffic by using modified ASR ARQ without ACK and reduces loss rate by using FEC in the case of high error condition. Also, for non real-time traffic, the use of ASR ARQ without ACK enhances throughput performance and delay time is decreased by using FEC in the case of high error rate channel. As a result of simulation, the proposed scheme has better performance than conventional ASR ARQ protocol in view of delay and throughput.

  • PDF

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

A Modulation and Channel State Estimation Algorithm Using the Received Signal Analysis in the Blind Channel (블라인드 채널에서 수신 신호 분석 기법을 사용한 변조 및 채널 상태 추정 알고리즘)

  • Cho, Minhwan;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1406-1409
    • /
    • 2016
  • In this paper, we propose the heuristic signal grouping algorithm to estimate channel state value over full blind communication situation which means that there is no information about the modulation scheme and the channel state information between the transmitter and the receiver. Hereafter, using the constellation rotation method and the probability density function(pdf) the modulation scheme is determined to perform automatic modulation classification(AMC). Furthermore, the modulation type and a channel state value estimation capability is evaluated by comparing the proposed scheme with other conventional techniques from the simulation results in terms of the symbol error rate(SER) and the root mean square error (RMSE).