• Title/Summary/Keyword: commonness discovery

Search Result 4, Processing Time 0.055 seconds

The Influence of Number of Targets on Commonness Knowledge Generation and Brain Activity during the Life Science Commonness Discovery Task Performance (생명과학 공통성 발견 과제 수행에서 대상의 수가 공통성 지식 생성과 뇌 활성에 미치는 영향)

  • Kim, Yong-Seong;Jeong, Jin-Su
    • Journal of Science Education
    • /
    • v.43 no.1
    • /
    • pp.157-172
    • /
    • 2019
  • The purpose of this study is to analyze the influence of number of targets on common knowledge generation and brain activity during the common life science discovery task performance. In this study, 35 preliminary life science teachers participated. This study was intentionally made a block designed for EEG recording. EEGs were collected while subjects were performing common discovery tasks. The sLORETA method and the relative power spectrum analysis method were used to analyze the brain activity difference and the role of activated cortical and subcortical regions according to the degree of difficulty of common discovery task. As a result of the study, in the case of the Theta wave, the activity of the Theta wave was significantly decreased in the frontal lobe and increased in the occipital lobe when the difficult difficulty task was compared with the easy difficulty task. In the case of Alpha wave, the activity of Alpha decreased significantly in the frontal lobe when performing difficult task with difficulty. Beta wave activity decreased significantly in the frontal lobe, parietal lobe, and occipital lobe when performing difficult task. Finally, in the case of Gamma wave, activity of Gamma wave decreased in the frontal lobe and activity increased in the parietal lobe and temporal lobe when performing the difficult difficulty task compared to the task of easy difficulty. The level of difficulty of the commonality discovery task is determined by the cingulate gyrus, the cuneus, the lingual gyrus, the posterior cingulate, the precuneus, and the sub-gyral where it was shown to have an impact. Therefore, the difficulty of the commonality discovery task is the process of integrating the visual information extracted from the image and the location information, comparing the attributes of the objects, selecting the necessary information, visual work memory process of the selected information. It can be said to affect the process of perception.

A Study of the Extension of the Ability of Mathematics through Cooperation of Group work at the Middle School. (중학교에서의 조별 협력학습을 통한 수학과 학력신장에 관한 연구)

  • 이영호;김응환
    • Journal of the Korean School Mathematics Society
    • /
    • v.3 no.1
    • /
    • pp.177-188
    • /
    • 2000
  • Mathematics is extreme the differences of the scholarly attainments in comparison with other subjects at a middle school. Specially, the students at islands and places leave much to be desired the scholarly attainments standards of mathematics. Therefore, every school takes movement class according to level these days. And the small schools put in effect the cooperation of group work through the small groups. These classes are effective at the scholarly attainments extension to some degree, but each student is extreme the differences of scholarly attainments. On this, the small school was the subject of study at the present research and put in effect the cooperation of group work through the small groups. The students were divided in three groups; the top class, average, the low class, And they were offered the fitting textbooks matching the cooperation of group work and the opportunities of discovery learning fitting an individual ability and standard. Consequently, some educational materials were made, for example, question papers, commonness learning materials, choice learning materials. These materials were put in effect to the students to be able to succeed discovery learning. With this, the students were investigated an interest of mathematics and the influence giving at the studies attainment. And the students were put in effect the cooperation of group work through the small groups to improve uniformity and sturdiness of the mathematical education. The conclusion at the present research is as follows. 1) When the students put in effect the cooperation of group work through the small groups, the scholarly attainments of mathematics totally didn't display useful changes as improvement. However, the students of average and the low class gradually seemed to improve the scholarly attainments of mathematics as the help of the top class positively. 2) An individual and cooperation learning in the method of the cooperation of group work through the small groups displayed many changes at the learning attitude of the students by means of discovery learning thanks to the learning heads. 3) When the investigator put in effect the cooperation of group work through rather the small groups than the large groups, the numbers of the students experiencing interest about mathematics increased in 26% and this learning method should continue to progress.

  • PDF

Scientific Thinking Types and Processes Generated in Inductive Inquiry by College Students (대학생들의 귀납적 탐구에서 나타난 과학적 사고의 유형과 과정)

  • Kwon, Yong-Ju;Choi, Sang-Ju;Park, Yun-Bok;Jeong, Jin-Su
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.3
    • /
    • pp.286-298
    • /
    • 2003
  • The purpose of this study was to analyze scientific thinking types and processes generated in inductive inquiry by college students. Subjects were three college student. Three inductive tasks were developed: Caminalcules set I which is a task consisted of 6 imaginary animals, a potato task which is a task about the interaction between juiced potato and $H_2O_2$, and Caminalcules set 2. Subjects' thinking types and processes were investigated through thinking-aloud method and interview. Subjects' performances were recorded on videotapes and analyzed. Subjects have shown 5 types of inductive thinking in the first task; observing, discovering commonness, discovering pattern, classifying, discovering hierarchy. The processes of inductive thinking shown by students are followed; observing $\rightarrow$discovering commonness $\rightarrow$classifying $\rightarrow$discovering pattern $\rightarrow$discovering hierachy. The subtypes of inductive thinking on observing were investigated by the analysis of subjects' performance on the second task. In analysis of protocol, student' thinking types on observing have been classified as simple observing and operational observing. Operational observing has been categorized conjectural observing and predictive observing. The subtypes of inductive thinking on classification and hierarchy were investigated by the analysis of subjects' performance on the third task. In analysis of protocol, students' thinking types on classification have been searching criteria for classifying and selecting criteria for classifying. Subtypes of discovering hierarchy have been classifying groups and hierarchical ordering by students. Processes of classifying groups proceeded from searching criteria for classifying to selecting criteria for classifying.

A Philosophical Study on the Generating Process of Declarative Scientific Knowledge - Focused on Inductive, Abductive, and Deductive process (선언적 과학 지식의 생성 과정에 대한 과학철학적 연구 - 귀납적, 귀추적, 연역적 과정을 중심으로 -)

  • Kwon, Yong-Ju;Jeong, Jin-Su;Park, Yun-Bok;Kang, Min-Jeong
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.3
    • /
    • pp.215-228
    • /
    • 2003
  • The present study is to analyze the arguments about the generation of declarative scientific-knowledge in the philosophy of science and invent a structured model of the process of scientific-knowledge generation with the types of the generated scientific-knowledge. The invented model shows that scientific-knowledge generation is a distinctive process with the processes of inductive, abductive, and deductive thinking. Furthermore, inductive process is included with observation, which is consisted of simple observation and operative observation, and rule-discovery which is involved with the processes of commonness discovery, classification, pattern discovery, and hierarchical relationship. Also, abductive process has two components. One component generates question and second component generates hypothesis in which the process consists of representing question situation, identifying experienced situation, identifying causal explicans, and generating hypothetical explicans. Finally, deductive process is involved with logical inventing test method and evaluation criteria, concrete inventing test method and evaluation criteria, evaluating hypothesis, and making conclusion.