• 제목/요약/키워드: common rail

검색결과 362건 처리시간 0.026초

Swirl Groove Piston에 의한 커먼레일 디젤기관의 연소성 향상에 관한 고찰 (The Study for Improving the Combustion in a Common-rail Diesel Engine using Swirl Groove Piston)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.145-151
    • /
    • 2010
  • The performance of a direct-injection diesel engine often depends on the strength of swirl or squish, the shape of combustion chamber, the number of nozzle holes, etc. This is natural because the combustion in the cylinder was affected by the mixture formation process. Since the available duration to make the mixture formation of air-fuel is very short, it is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this paper, the combustion process of a common-rail diesel engine was studied by employing two kinds of pistons. One has several grooves with inclined plane on the piston crown to generate swirl during the compression and expansion strokes in the cylinder in order to improve the atomization of fuel. The other is a toroidal piston, generally used in high speed diesel engines. To take photographs of flame and flaming duration, a four-stroke diesel engine was remodeled into a two-stroke visible single cylinder engine and a high speed video camera was used.

예혼합 압축 착화 엔진용 고압 인젝터의 분무특성과 분사조건 최적화에 관한 기초 연구 (The basic study of spray characteristics and optimal fuel injection for high pressure injector in homogeneous charge compression ignition engine)

  • 류재덕;김형민;이기형;이창식
    • 한국분무공학회지
    • /
    • 제9권1호
    • /
    • pp.30-36
    • /
    • 2004
  • The purpose of this study was to investigate the fuel spray characteristics that made most important at an homogeneous air fuel mixture, in a common rail direct injection type HCCI engine. As a study conducted relation which a back pressure and injection pressure are influenced to air fuel mixture characteristics, we tried to offer date even through we select suitable to a HCCI engine running condition of the fuel injection condition. To accomplish the study, to measure a injection rate of common rail type injector and to visualize and simulate a fuel spray was conducted. From the result of injection rate, a common rail injector was confirmed to appear a initial delay of 0.3msec and a latter period delay of 0.7msec. Therefore, real injection duration was determined by about 0.5msec increasing. From the result of fuel spray, the spray penetration was proportional to 1/4 exponent of atmosphere pressure. An experimental equation was deduced from the spray penetration of spray visualization experiment and the relation of injection duration and penetration was estimated in HCCI engine using an experimental equation.

  • PDF

커먼레일 디젤 인젝터에서 연료 분사 및 분위기 압력이 DME 분무 특성에 미치는 영향 (Effect of High Injection Pressure and Ambient Pressure on the DME Spray Characteristics Injected Through a Common-rail Diesel Injector)

  • 김형준;박수한;이창식
    • 한국분무공학회지
    • /
    • 제14권2호
    • /
    • pp.71-76
    • /
    • 2009
  • The aim of this investigation is to study the effect of the high injection pressure on the dimethyl ether (DME) spray characteristics injected through a common-rail diesel injector under various ambient pressures. In order to investigate the effect of the injection pressure and ambient condition, the common-rail injection system with two high pressure pumps and high pressure chamber pressurized up to 40 bar were used, respectively. Spray images of DME fuel obtained from a visualization system composed of high speed camera and two metal halide lamps as the light source. From the obtained images, the spray behaviors such as a spray development process, spray tip penetration, spray width, and spray cone angle were measured for analyzing the DME spray characteristics under various experimental conditions. It was found that the spray development slowed as the ambient pressure increased and spray tip penetration at injection pressure of 90 MPa is longer than that at 50 MPa. In addition, the spray width at the end stage of injection decreased under the atmospheric conditions due to the evaporation property of DME fuel, and DME spray shows narrow spray cone angle according to the injection pressure increased.

  • PDF

커먼레일 디젤기관의 인터쿨러 대체용 볼텍스 튜브 장치의 성능특성에 관한 실험 연구 (An Experimental Study on the Performance Characteristics of the Vortex Tube for Substitution of the Intercooler in a Common-rail Diesel Engine)

  • 임석연;최두석;류정인
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.172-178
    • /
    • 2008
  • An object of this study is to confirm performance characteristics of the vortex tube apparatus for substitution of the intercooler in a common-rail diesel engine. The turbo pressure, the intake air flow rate and the ${\Delta}T_c$ decrease ratio of the intercooler were measured in a experimental engine. The vortex tube apparatus was made after confirmation of the geometric phenomena in fundamental experiments. To investigate energy separation characteristics of the vortex tube, the measured turbo pressure was applied to the vortex tube inlet and the ${\Delta}T_c$ decrease ratio was compared with one of the intercooler in the cold air mass flow ratio similar to the intake air flow rate of the experimental engine. From the results, we found that the energy separation ratio is increased according to of the inlet pressure and the ${\Delta}T_c$ decrease ratio of the vortex tube apparatus is higher than one of the intercooler at low engine speed and engine load of medium and low.

커먼레일 디젤 엔진의 균일 예혼합 연소 및 배기특성 (Homogeneous Charge Compression Ignition Combustion and Exhaust Characteristics of a Common-rail Diesel Engine)

  • 윤승현;이두진;김명윤;이제형;이창식
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.75-81
    • /
    • 2005
  • An experimental study on homogeneous charge compression ignition combustion with direct fuel injection was conducted using a single cylinder common-rail diesel engine. To improve the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber and the diesel fuel was injected into the combustion chamber as an ignition source for the gasoline premixture. The experimental results show that soot emissions were dramatically reduced with the increase of fuel premixing ratio, however incomplete products such as HC and CO increased with the increase of the premixed ratio. Earlier injection of Dl diesel fuel increased the IMEP with the decrease of HC and CO concentrations.

CRDI 방식 디젤기관에서 바이오디젤유 적용시 매연과 NOx의 동시저감에 관한 실험적 연구 (An Experimental Study on Simultaneous Reduction of Smoke and NOx with Biodiesel Fuel in a CRDI Type Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.35-40
    • /
    • 2007
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong, In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated common rail diesel engine. The smoke emission of biodiesel fuel 5vol-%(min. content) was reduced in comparison with diesel fuel, that is, it was reduced approximately 60% at 4000rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emission of biodiesel fuel was increased compared with a commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with biodiesel fuel(5vol-%) and cooled EGR method($5{\sim}10%$) in a common rail diesel engine.

커먼레일 분사장치를 이용한 Dimethyl Ether와 디젤연료의 연소특성 (Combustion Characteristics of Dimethyl Ether (DME) and Diesel Fuel Using a Common-rail Fuel Injection System)

  • 최욱;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.30-37
    • /
    • 2004
  • The combustion and emission characteristics of a direct injection CI engine fuelled with DME(Dimethyl Ether) and diesel fuel were compared at idle engine speed(800 rpm) with various injection parameters. An optical single cylinder diesel engine equipped with a common-rail fuel injection system was constructed to investigate combustion processes of DME and diesel fuel. The combustion images were recorded with a high-speed video camera system. The results demonstrated that the DME-fuelled engine was superior to the conventional diesel engine in terms of engine performance and emissions. The optimal injection timing of DME was located around IDC(Top Dead Center), which was roughly same as that of diesel fuel. As the injection timing was advanced much earlier than TDC, NOx (Nitric Oxides) level increased considerably. NOx emission of DME was equal or a little higher than that for diesel fuel at the same injection pressure and timing because of higher evaporation characteristics of DME. Throughout all experimental conditions, DME did not produce any measurable smoke level.

커먼레일 디젤엔진 발전기의 연소상태 개선에 따른 연비절감을 위한 수치해석 (Numerical Analysis for Reduction of Fuel Consumption by Improvement of Combustion Condition in a Common Rail Diesel Engine Generator)

  • 김승철;김청균
    • 한국가스학회지
    • /
    • 제20권4호
    • /
    • pp.58-64
    • /
    • 2016
  • 차량에 사용되는 주엔진은 부하영역 전체에서 효율을 증가시키기 위해 커먼레일 디젤엔진을 사용하고 있다. 그러나, 발전기용 엔진은 아직도 기계적 구성엔진으로 캠으로 구동되는 연료분사밸브가 사용되어지고 있다. 또한, 발전기용 엔진 대부분은 50%이하의 부분부하가 적용되고 있다. 따라서, 전부하에 세팅된 차량용 디젤엔진을 부분부하에서 효율적인 운전을 하기 위해서는 연료분사시기 재조정이 필요하다. 본 연구에서는 시설물에 사용되는 엔진발전기의 운용특성을 파악하여 연료분사시기를 재조정함으로서 부분부하 연료소비율을 개선시킨 결과를 연구하고자 한다.

발전용 커먼레일 디젤엔진에 적합한 최적화 연소실형상 설계를 위한 수치해석 (A Numerical Analysis on Suitable Combustion Chamber Geometry of Common Rail Diesel Engine for Electric Generation)

  • 김승철
    • 한국가스학회지
    • /
    • 제20권4호
    • /
    • pp.44-49
    • /
    • 2016
  • 본 연구는 연소실 형상 변화에 따른 디젤연소와 배출가스의 특성에 대해 살펴보았다. 발전용 커먼레일 디젤엔진의 최적화 설계를 위한 연소실형상을 제시하기 위해 5가지 타입형상을 연비 측면에서 계산하였다. 연소실 형상은 연소 시 분무면적을 변화시킴으로서 연소특성에 영향을 주었으며 이러한 주요요소는 연소실 형상 비였다. 이러한 수치해석의 결과는 연소실 형상의 변화는 발전기의 연비 개선을 가능하도록 한다고 판단되었다.

고압 분사용 Piezo 인젝터의 Pilot 분무특성 (Pilot Spray Characteristics of Piezo type Injectors for High Pressure Injection)

  • 배장웅;김하늘;이진욱;강건용;류정인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2076-2081
    • /
    • 2004
  • Future exhaust gas limits for diesel-driven passenger cars will force the automotive industry to significantly improve the performance of engine. Since modern common-rail injection systems deliver more degrees of freedom referring to the injection process, again the optimization of the injection process could offer a possibility to meet the exhaust gas limits. This study describes the characteristic the pilot spray structure of piezo-driven injector for a passenger car common-rail system to be applicable multiple injection caused by fast response rather than solenoid-driven injector. The piezo-driven injector is prototype injector with same needle chamber of solenoid injector and the solenoid-driven one is commercial injector. The pilot spray characteristic such as spray tip penetration, spray speed, spray angle were obtained by spray images, which is measured by the Mie scattering method with optical system for high-speed temporal photography. It was found that piezo-driven injector effected electric change as important factor and showed faster response than solenoid-driven injector.

  • PDF