• 제목/요약/키워드: common gasoline

검색결과 36건 처리시간 0.026초

가짜 고급휘발유 판정을 위한 성분 분석 (Analysis of Components to Determine Illegal Premium Gasoline)

  • 임영관;강병석;이보오미;박소휘;박장민;고영훈;김승태;강대혁
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.232-239
    • /
    • 2021
  • Petroleum is the most consumed energy source in Korea with a usage rate of 38.7% among the available primary energy sources. The price of liquid petroleum products in Korea includes taxes such as transportation·environment·energy tax. Thus, illegal production and distribution of liquid petroleum is widespread because of its huge price difference from that of the normal product and its tax-free nature. Generally, the illegal petroleum product is produced by mixing liquid petroleum with other similar petroleum alternatives. The two kinds of gasoline, common gasoline and premium gasoline, are being distributed in Korea. The premium gasoline is often adulterated with cheaper common gasoline that lowers the octane number of gasoline. It is possible to distinguish them with their color difference, green and yellow for different grade gasoline. However, when small volume of common gasoline is added to premium gasoline, it is difficult to determine whether premium gasoline contained common grade or not. In this study, we inspect gasoline, which is illegally produced by mixing common gasoline to premium gasoline. When the ratio of mixing common gasoline is increased, premium gasoline shows decreasing absorbance at 600 nm and 650 nm under UV-Vis spectrometer. Moreover, the detected intensity (mV·s) of green dye in high performance liquid chromatography (HPLC) was decreased by common gasoline under 0.99 correlation value. The more the common gasoline is mixed, the more olefin and naphthene are detected by gas chromatography. In addition, trimethyl pentane as octane improver, paraffin and toluene are decreased by common gasoline mixing. The findings of this study suggests that illegal petroleum can be identified by analysis of components and simulated samples.

압축착화 엔진에서 가솔린과 디젤연료의 연소 특성에 관한 연구 (A Study on Combustion Characteristics of Gasoline and Diesel Fuels in a Compression Ignition Engine)

  • 김기현
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.63-69
    • /
    • 2017
  • The combustion characteristics of gasoline and diesel were tested in a compression ignition engine. Both fuels were used with same common rail injection system. Combustion experiment showed that low load condition of 0.45 MPa IMEP (indicated mean effective pressure) was tested in metal and optical engines. The gasoline combustion showed higher hydrocarbon and carbon monoxide emissions but lower soot emission compared with diesel combustion. NOx emissions were very high at late injection timing but significantly decreased at early injection timing due to the lean combustion resulted from vigorous mixing process. Direct combustion visualization showed that the diesel combustion was dominated by diffusion combustion exhibiting soot incandescence and the gasoline combustion was mostly consisted of premixed combustion showing blue chemiluminescence.

압축착화 엔진에서 가솔린 예혼합이 연소 및 배기 특성에 미치는 영향 (Effect of Gasoline-premixing on Combustion and Exhaust Emissions Characteristics in Compression Ignition Engines)

  • 차준표;권석주;허정윤;이창식;박성욱
    • 한국연소학회지
    • /
    • 제15권4호
    • /
    • pp.53-57
    • /
    • 2010
  • The purpose of the present work is to investigate the effect of gasoline-premixing on a combustion and emissions characteristics in a compression ignition engine. For studying combustion characteristics, a combustion pressure and rate of heat release (ROHR) were measured using a single-cylinder DI compression ignition engine with a common-rail injection system and premixed fuel injection system. In addition, exhaust emissions characteristics were studied using emission analyzers and smoke meter. The experimental results showed that the case of gasoline-premixing had longer ignition delay and lower combustion pressure compared to the cases of diesel direct injection. Furthermore, premixed gasoline-air mixture reduced NOx emissions due to low peak of ROHR.

압축착화 엔진에서 디젤-가솔린 Dual Fuel이 연소 및 배기 특성에 미치는 영향 (Fuel Injection System on Combustion and Exhaust Emissions Characteristics in Compression Ignition Engines)

  • 권석주;차준표;성기안;박성욱
    • 한국연소학회지
    • /
    • 제16권1호
    • /
    • pp.52-57
    • /
    • 2011
  • The present study describes the characteristics of combustion and exhaust emissions in compression ignition engines using diesel-gasoline dual fuel. For investigating combustion characteristics, diesel fuel was injected directly in a single-cylinder compression ignition engine with a common-rail injection system and gasoline fuel was injected into a premixed chamber installed in an intake port. In order to investigate exhaust emission characteristics, exhaust gas was measured by emission analyzer and smoke meter. The experimental results showed that cases of diesel-gasoline dual fuel combustion exhibited extended ignition delay and reduced peak combustion pressure compared to those of directly injected diesel fuel cases. Furthermore, premixed gasoline-air mixture reduced NOx emissions due to low peak of rate of heat release(ROHR).

디젤기관의 분사밸브를 위한 고속 솔레노이드의 성능에 관한 연구 (A Study of Performance Test of High Speed Solenoid for Fuel Injector in Diesel Engine)

  • 조규학;라진홍;안수길
    • 동력기계공학회지
    • /
    • 제5권3호
    • /
    • pp.11-16
    • /
    • 2001
  • In the DI diesel engine of passenger cars, common rail injection system have been used to improve the engine performance and reduce the exhaust emission by controlling injection timing, injection pattern, and injection duration. In case that common rail injection system is applied to high speed DI diesel engine, it is necessary to have high response and good repetition characteristics. These characteristics of injector depend on the characteristics of solenoid. Thus, to apply the common rail injection system in the high speed diesel engine, we had designed and made a multi-pole solenoid, and carried out repetition, response test to compare the multi-pole solenoid with the gasoline Injector solenoid. The result shows that repetition and response characteristics of multi-pole solenoid have better characteristics than the gasoline injector solenoid.

  • PDF

디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구 (Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels)

  • 박세원;박수한;박성욱;전문수;이창식
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.

촉매에 의한 가솔린 기관배기중 CO와 HC 농도저감에 관한 실험적 연구 (Experimental study on the reduction of CO and HC concentrations in the exhaust gas of gasoline engine by catalysts)

  • 조진호;서정일;조종철
    • 오토저널
    • /
    • 제4권1호
    • /
    • pp.46-55
    • /
    • 1982
  • When an oxidizing catalytic converter which makes use of platium as a catalyst is employed by means if emission control of CO and HC gasoline engine, the effects of important factors for the purification efficiency, i.e engine speed and secondary air rate, on the reduction of CO and HC concentrations in the exhaust gas are studied experimentally. In the experiment, gasoline and LPG are used as a fuel, and the purification efficiency is examined and the results of both cases are compared with each other. The experimental results showed that the purification efficiency in the case of LPG is usually higher than that of gasoline, and the optimum values of engin speed and secondary air rate for maximum purification efficiency exist in common on both cases.

  • PDF

The Performance and Emissions Analysis of a Multi Cylinder Spark Ignition Engine with Gasoline LPG & CNG

  • Chauhan, Bhupendra Singh;Cho, Haeng-Muk
    • 한국가스학회지
    • /
    • 제15권4호
    • /
    • pp.33-38
    • /
    • 2011
  • The introduction of alternative fuels is beneficial to overcome the fuel shortage and reduce engine exhaust emissions. LPG and CNG are relatively clean fuel and considered as most promising alternative automotive fuels worldwide because of its emission reduction potential and lower fuel price compared to gasoline. Now a day’s adaptation of dual fuel approach is the growing as common trend. The two fuels can be successfully implemented with existing gasoline engine with little modification. The present study was done to analyze the performance and emissions analysis of a multi cylinder spark ignition engine fuelled with the benefits of CNG and LPG aseffective alternate automotive fuels by simply using them in an unmodified petrol engine. The test results indicate, the energy content of CNG and LPG is the most limiting factor in acceptance for fuel economy and performance reasons. Thermal efficiency was high for CNG lowest for gasoline and LPG between the two. BSFC, CO and HC were low and NOx was high for CNG and low for gasoline, LPG lies between the two.

커먼레일 디젤 엔진의 균일 예혼합 연소 및 배기특성 (Homogeneous Charge Compression Ignition Combustion and Exhaust Characteristics of a Common-rail Diesel Engine)

  • 윤승현;이두진;김명윤;이제형;이창식
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.75-81
    • /
    • 2005
  • An experimental study on homogeneous charge compression ignition combustion with direct fuel injection was conducted using a single cylinder common-rail diesel engine. To improve the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber and the diesel fuel was injected into the combustion chamber as an ignition source for the gasoline premixture. The experimental results show that soot emissions were dramatically reduced with the increase of fuel premixing ratio, however incomplete products such as HC and CO increased with the increase of the premixed ratio. Earlier injection of Dl diesel fuel increased the IMEP with the decrease of HC and CO concentrations.

예혼합 압축착화 엔진에서 가솔린-디젤 연료의 연소 및 극미세입자 배출 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Nanoparticle Emission Characteristics of Gasoline-diesel Fuel in a Premixed Charge Compression Ignition Engine)

  • 윤승현;이두진;이창식
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.71-76
    • /
    • 2012
  • The aim of this work was to investigate the combustion and nanoparticle emission characteristics of premixed charge compression ignition (PCCI) combustion at various test conditions using a single cylinder common-rail diesel engine. In order to create the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber during the intake process and then the diesel fuel was directly injected into the combustion chamber as an ignition source for the gasoline premixture. From these results, it revealed that the ignition delays and combustion durations were gradually prolonged and the peak combustion pressure were increased because diesel fuel was injected early injection timing with the increase of premixed ratio. In addition, as the increase of premixed ratio, total particle number is generally decreased and particle volume also indicated low levels at the direct injection timing from BTDC $20^{\circ}$ to TDC. At further advanced injection timing, total particle number and volume were generally increased