• Title/Summary/Keyword: commercial pipe

Search Result 193, Processing Time 0.025 seconds

Introduction of Optimized Design of Anchoring System through Design Modification of Pocket and Chain Compressor (설계 개선을 통한 선박의 계류 시스템 최적화 사례 소개)

  • Lee, Jae-Hoon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.55-62
    • /
    • 2011
  • Although the performance of the commercial vessel has been dramatically improved through innovations, there has been no big changes on the traditional anchoring method of commercial vessels, both on design and operation until now. In this paper, two cases of design modifications were introduced for optimized design of pocket type anchor handling, which resulted in improved performance of the vessel's anchoring. From the first time fully balanced type anchors were applied on vessels in Korean shipyard, main design problem on this application was that the anchor doesn't normally slide into the pocket when the anchor fluke is not in line with pocket, as the anchor freely rotates by the swivel on forerunner. In order to prevent the problem, swivel has been deleted on the forerunner to prevent anchor rotation until now, but this solution caused problems such as twist lock of anchor chain, restriction of windlass direction, etc. On this paper, one of the solution is introduced to overcome the design problem by tilting the hawse pipe to some extent, which makes anchor turned at the time anchor ring touches the pocket skirt and that it properly slides into the pocket. Secondly, one of the solution is introduced to overcome misalignment problem between anchor chain cable and roller of chain compressor, which has been frequently occurred, by modification of roller design.

  • PDF

Heating Efficiency of Difference Heat Collection Methods for Greenhouse (유리온실의 태양열 집열방법별 집열효과)

  • 최영하;이재한;권준국;박동금;이한철
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.166-170
    • /
    • 2000
  • Three methods for heat collection, which were the flat solar collector, two fan with radiator, and square pipe method, were studied to sue efficiently solar energy in the three different glasshouses for two years. The flat plate solar collector method was made use of the commercial solar collector with collection area of 24$m^2$, the method of two fans with radiators collected solar energy at the top of the glasshouse. An thermal storage tank was constructed underneath in teach glasshouses. When an area of 1,000$m^2$ was heated to the minimum temperature of 9$^{\circ}C$, the decrease rate of heating fuel for the flat plate solar collector, the fan attached radiator and the square pipe methods were 7%, 19% and 28% respectively. The flat plate solar collector method, which could be heated approximately 40-50$m^2$, was currently used by most of the farmer. Under the condition, the decrease rate of annual heating fuel was 14% which was not better for an economic annual heating fuel. If the fan with radiator method was operated, the use of installation and maintenance were required. So, it could not be good economic efficiency of solar heating. The heating efficiency of the square pipe method was relatively better thant those of the flat plate solar collector or the fan attached radiator. Since the cost of materials and its installation of the use of square pipe method was lower than any other method. However, corrosion of the pipe, greater shade in the greenhouse and strength against the square pipe were problems that should be overcome in the square pipe method.

  • PDF

A Study on Application and Stability Analysis of Spiral Pipe Nailing System (스파이럴 파이프 네일링 시스템의 안정해석 및 적용성에 관한 연구)

  • Park, Si-Sam;Park, Sung-Chul;Jung, Sung-Pill;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.41-49
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the SPN (Spiral Pipe Nailing) system, is developed to self drilling method can apply to ground which is hard to keep shape of bore hole. And limit equilibrium analysis with simplified trial wedge method while length ratio and bond ratio being altered was performed to evaluate slope stability considered of tensile strength and bending stiffness. Also, using $FLAC^{2D}$ program, superiority of the SPN system was compared to the GSN (General Soil Nailing) system about an example section. And effects of various factors related to the design of the SPN system, such as the type of drilling method and the bit, are examined throughout a series of the displacement-controlled field pull-out tests. As a result, the SPN system is better than the GSN system in slope stability because of having larger bending stiffness, tensile strength and unit skin friction. And results of simplified trial wedge method are similar to results of TALREN 97 program, commercial limit equilibrium analysis computer software, about an example section. Consequently, it will find out of that the SPN system reduce displacements and settlements in down excavation process as well as to increase the global stability.

  • PDF

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

Optimal Design of Branched Water Supply System with GIS (GIS를 이용한 분기형 관로의 최적설계)

  • Kim, Joong-Hoon;Yeon, Sang-Ho;Geem, Zong-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.55-61
    • /
    • 1996
  • The objective of this paper is to show an optimal design model for branched water supply system which also can find the optimal location of pumping stations using linear programming. GIS is utilized in this model to better handle the data and the results front the optimization. The developed model considers hydraulic influences of some appurtenances such as supply tunnels and a filtration plant The model also considers tunnel construction cost which should be treated differently from pipe construction cost Different from other models presently available, the model guarantees a nonnegative pressure at every junction node in the system. The objective function includes annual operation cost (electricity rate) ill addition to initial construction cost, thus producing a more reasonable decision. The model selects the optimal diameter not in the form of continuous number but in the form of commercial discrete diameter (pipe size) using the pipe lengths as decision variables instead of pipe diameters. The model not only determines the optimal pumping head for each pumping station but also finds the optimal location and number of pumping stations. GIS is used to handle hydraulic and budgetary data automatically and to visualize the results for the of optimal design of the system. The model has been applied to an existing water supply system. 'The results show that the optimization model with the aid of GIS is helpful in the decision-nulling process for the design of more economical systems, and can be dot into practice successfully.

  • PDF

Structural Safety Assessment of Piping Used in Offshore Plants According to Thermal Load and Motion (해양플랜트에 사용되는 배관의 열 하중과 구조물의 운동에 따른 구조안전성 평가)

  • Ryu, Bo Rim;Kang, Ho Keun;Duong, Phan Anh;Lee, Jin Uk
    • Journal of Navigation and Port Research
    • /
    • v.45 no.4
    • /
    • pp.212-223
    • /
    • 2021
  • The objective of this study was to evaluate structural safety according to environmental conditions acting on the piping of offshore structure and the motion of the structure. As for conditions acting on the piping, the maximum and minimum temperature conditions were used to analyze the design conditions of N2 generator. The motion of the structure was calculated and applied according to the DNV(Det Norske Veritas) rule. Each condition was combined and a total of 26 load combinations were constructed according to thermal load, motion load, and presence or absence of pipe support. Analysis was performed using a commercial program MSC Patran/Nastran. Thermal analysis was performed by applying the steady-state method, Sol 153. Thermal-structural coupled analysis was performed using Sol 101, a linear-static method. As a result of the analysis, the stress tended to increase when temperature inside the pipe was lower in Set 1 and Set 2, when temperature was higher in Set 3, and when the temperature difference between the inside and outside of the pipe in Set 4 was increased. However, the sum of stresses in the condition with only temperature load and the condition with only the kinetic load did not show the same value as the stress in the composite load condition of two loads. That is, the influence of the motion load varied depending on the direction of motion, the arrangement of pipes, and the position of the support. Therefore, it is necessary to comprehensively consider the size and direction of the motion load acting on the piping, the arrangement of the piping, and the location of the pipe supports during the design of piping.

Numerical study on evaluation of grout diffusion range by the conditions of steel pipe reinforced grouting method (강관보강그라우팅 주입 조건에 따른 그라우트 확산 범위 평가에 관한 수치해석적 연구)

  • Jun-Beom An;Gye-Chun Cho;Yuna Lee;Jaewon Lee;Kyeongnam Min;Gukje Jo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.345-363
    • /
    • 2024
  • Steel pipe reinforced grouting method has been widely used to strengthen the crown of tunnel face and prevent groundwater leakage during tunnel excavation. Various injection procedures without sealing have recently been suggested to enhance efficiency. There are two representative injection methods. One is simultaneous injection in segmented batches, and the other is multiple injection using the external packer. The pros and cons of each method were discussed in terms of construction duration and equipment. However, it has yet to be discussed how the injection procedure affects the grout diffusion range in the ground. This study aims to evaluate the grout diffusion range quantitatively by considering the practical grouting sequences. The grout viscosity was measured by laboratory testing. Then, the numerical modeling was structured using the commercial computational fluid dynamics software. Finally, the grout diffusion range affected by the injection procedure and ground conditions was evaluated by performing the numerical parametric study. The results showed that the injection method highly affected the grout diffusion range, especially for inhomogeneous soil. Consequently, it is anticipated that the proper method of steel pipe reinforced grouting will be suggested.

Defect classification of refrigerant compressor using variance estimation of the transfer function between pressure pulsation and shell acceleration

  • Kim, Yeon-Woo;Jeong, Weui-Bong
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.255-264
    • /
    • 2020
  • This paper deals with a defect classification technique that considers the structural characteristics of a refrigerant compressor. First, the pressure pulsation of the refrigerant flowing in the suction pipe of a normal compressor was measured at the same time as the acceleration of the shell surface, and then the transfer function between the two signals was estimated. Next, the frequency-weighted acceleration signals of the defect classification target compressors were generated using the estimated transfer function. The estimation of the variance of the transfer function is presented to formulate the frequency-weighted acceleration signals. The estimated frequency-weighted accelerations were applied to defect classification using frequency-domain features. Experiments were performed using commercial compressors to verify the technique. The results confirmed that it is possible to perform an effective defect classification of the refrigerant compressor by the shell surface acceleration of the compressor. The proposed method could make it possible to improve the total inspection performance for compressors in a mass-production line.

Numerical Study on Improvement of Mixing Equipment' Plan in a Water Treatment Plant (수리해석을 이용한 정수장내 혼화장치 설계 개선에 관한 연구)

  • Oh, S.Y.;Hyun, D.S.;Oh, J.J.;Lee, S.H.;Lee, N.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.777-782
    • /
    • 2001
  • In this study, we used In-line orifice mixer for efficient chemicals mixing in water treatment. The method of using In-line orifice mixer has been already proved the improvement of water treatment efficiency. Numerical study was performed using FLUENT, a commercial code, to standard design and production of effective In-line orifice mixer. As variable for exactly standardizing, a proper ratio between an outer diameter of cone and a diameter of pipe, a distance between cone and orifice, a determination of orifice diameter for an optimal mixing, a distance between injection nozzle's position and cone, Numerical study has been performed for optimal standard and analyzed flow field on a basis of turbulent intensity in an orifice downstream.

  • PDF

Analysis of Design and Operation Performance of Micro Gas Turbine : Part 1 - Performance Analysis Program (마이크로 가스터빈 설계 및 운전 성능 분석 : 제1부 - 성능해석 프로그램)

  • Kim, Jeong Ho;Kang, Do Won;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, an in-house program to predict steady state operation of micro gas turbines is constructed using MATLAB. The program consists of two parts: design and off-design simulations. The program is fully modular in its structure, and performance of each component (compressor, combustor, turbine, recuperative heat exchanger and pipe elements) is calculated in a separate calculation module using mass and energy balances as well as models for off-design characteristics. The off-design modules of compressor and turbine use performance maps, which are program inputs. The off-design operation of a micro gas turbine under development was predicted by the program. The prediction results were compared with those by commercial software, and the validity of the in-house program was confirmed.