• Title/Summary/Keyword: commercial enzymes

Search Result 229, Processing Time 0.028 seconds

Enzymatic Hydrolysis of Rice Straw, a Lignocellulosic Biomass, by Extracellular Enzymes from Fomitopsis palustris (Fomitopsis palustris의 균체 외 효소에 의한 볏짚 당화에 관한 연구)

  • Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Kim, Tae-Jong;Kim, Nam-Hun;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.262-273
    • /
    • 2010
  • In the enzymatic hydrolysis of rice straw and wood meals using extra-cellular enzymes from Fomitopsis palustris, key factors which enhanced the sugar conversion yield were investigated in this work, such as enzyme production and enzyme reaction conditions, surfactant effects, and the surface structure of substrates. F. palustris cultured with softwood mixture produced 12.0 U/$m{\ell}$ for endo-${\beta}$-1,4-gulcanase (EG), 116.68 U/$m{\ell}$ for ${\beta}$-glucosidase (BGL), 18.82 U/$m{\ell}$ for cellobiohydrolase (CBH), and 13.33 U/$m{\ell}$ for ${\beta}$-xylosidase (BXL). These levels of BGL, CBH, and BXL activities were two to four folds more than enzyme activities of F. palustris cultured with rice straw. The optimum reaction conditions of cellulase-RS which produced by F. palustris with rice straw and cellulase-SW which produced by F. palustris with softwood mixture were pH 5.0 at $45^{\circ}C$ and pH 5.0 at $50^{\circ}C$, respectively. The sugar conversion yield of cellulase-SW had the highest value of $40.6{\pm}0.6%$ within 72 h when rice straw was used as substrate. By adding 0.1% Tween 20 (w/w-substrate), the sugar conversion yield of rice straw was increased to 44%, which was about four fifths sugar conversion yield of commercial enzyme, Celluclast 1.5L (Novozyme A/S). A low crystallinity and an intensive fibril surface observed by the scanning electron microscope may explain the high sugar conversion yield of rice straw.

Screening of Extracts from Marine Green and Brown Algae in Jeju for Potential Marine Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity (제주 자생 해양 녹조류와 갈조류 추출물로부터의 항고혈압 활성)

  • Cha, Seon-Heui;Ahn, Gin-Nae;Heo, Soo-Jin;Kim, Kil-Nam;Lee, Ki-Wan;Song, Choon-Bok;K.Cho, So-Mi;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.307-314
    • /
    • 2006
  • This study was conducted to screen in vitro angiotensin converting enzyme (ACE) inhibitory activities of methanol (MeOH) and aqueous extracts which were prepared by four different extractions-80% methanol extracts(ME) at $20^{\circ}C\;and\;70^{\circ}C$, respectively and aqueous extracts (AE) at both temperatures with the residue of the MEs-of ten marine green algae and nineteen brown algae collected along Jeju coast of Korea. Most marine brown algae extracts showed higher capacities than those of marine green algae in ACE inhibitory activity. Particularly, $70^{\circ}C$ MeOH extract (70ME) of Hizikia fusiforme showed the strongest inhibition activity (about 87%) among all the extracts. Also, 70 MEs of Enteromorpha linza, Ishige sinicola, Laminaria ochotensis, Petrospongium rugosum, Sagrassum horneri, Undaria pinnatifida and $20^{\circ}C$ MeOH extracts (20ME) of Myagropsis myagroides, Petrospongium rugosum, $20^{\circ}C$ aqueous extracts (20AE) of Codium contractum, Enteromorpha compressa, and $70^{\circ}C$ aqueous extracts (70AE) of Ecklonia cava, Petrospongium rugosum showed moderate ACE inhibitory activities more than 50% and the other extracts exhibited weak activities. On tile other hand, E. cava had the best ACE inhibitory activity among 70AEs. This indicates that 70AE of E. cava contains potential anti-ACE macromolecular. We tried to proteolytic digest 70AE of E. cava to induce production of anti-ACE peptides from E. cava 70AE. The enzymes used are five pretenses including Kojizyme, Flavourzyme, Neutrase, Alcalase, and Protamex, which are food grade-commercial enzymes from Novo Co. Flavourzyme-digest of E. cava 70AE showed the highest inhibitory activity about 90%. And the five different enzymatic digests of the E. cava 70AE ranged from 2.33 to 3.56 ${\mu}g/mL$, respectively in $IC_{50}$ values of anti-ACE activity.

Strategy to Improve the Productivity of Broilers: Focusing on Pre-Starter Diet (초이사료 배합설계를 통한 육계 생산성 증대방안)

  • Nam, Doo Seok;Lee, Jinyoung;Kong, Changsu
    • Korean Journal of Poultry Science
    • /
    • v.42 no.3
    • /
    • pp.247-256
    • /
    • 2015
  • There are approximately 1,500 broiler farms in Korea, each raising 55,000 birds. Ninety-five percent of the farms are contracted with Integration Company. According to the Korean broiler performance index, broilers in Korea are marketed at 32 days with 1.52 kg of body weight. In contrast, the market age and body weight of broilers are 47 days/2.8 kg in the United States and 42 days/2.5 kg in Europe. Because of the younger market age of the Korean broiler, the pre-starter feed is important. Chicks exhibit poor absorption of dietary nutrients up to 7 days after hatching due to an immature digestive system and low enzyme secretion rate and activity. At the beginning of hatching, chicks obtain their nutrients from the egg yolk sac. It is highly recommended that chicks, after consuming the nutrients in the egg yolk sac, are given supplemented pre-starter feed to increase early growth rates and improve the performance of broiler production. Pre-starter nutrient requirements are not expressed in NRC, so Korean feeding standards for poultry and commercial breeding companies determine the nutrient requirements of pre-starter broiler chickens. Three approaches are followed to formulate specially designed pre-starter feeds for broiler chicks: (i) selective use of raw materials, (ii) proper standards of nutrient supply, and (iii) application of feed additives such as exogenous enzymes. In the selection of raw materials, those with high digestibility can be used. The absorption rate of carbohydrates in grains can be increased through feed processing at high temperature and high pressure. Soy proteins and fish meal can also be added as protein sources. As an energy source, vegetable oils are preferred over animal fats because of the former's high digestibility. It is suggested that the levels of proteins and amino acids are higher in pre-starter feed than in starter feed. With regard to energy, the sources of energy are more important than the levels of energy in feed. Feed additives such as exogenous enzymes can be used to improve nutrient digestibility. In addition, organic acids and plant extracts can be used as alternatives to animal growth promoters to stimulate immunity and prevent diseases. The growth performance of broilers is affected by various factors, such as management and disease control, in addition to the nutritional strategy; however, nutritional strategies play an important role in improving the productivity of broilers. Therefore, nutritional strategies, along with management and disease control, are required for improving the productivity of broilers in Korea.

Production and Characteristics of Cello- and Xylo-oligosaccharides by Enzymatic Hydrolysis of Buckwheat Hulls (메밀껍질의 효소분해에 의한 기능성 올리고당의 생산 및 특성)

  • Im, Hee Jin;Kim, Choon Young;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.201-207
    • /
    • 2016
  • This study was conducted to produce oligosaccharides from buckwheat hull by using commercial enzymes. Yields of oligosaccharides obtained by enzymatic hydrolysis of the cellulose and hemicellulose fractions were 132.37 and 393.04 g/kg, respectively. Xylose, glucose, fructose, xylobiose, xylotriose, cellobiose, and cellotriose were detected in the hydrolysate produced from buckwheat hull. Antioxidant activity of oligosaccharide from cellulose fraction (OSC) reduced with increasing hydrolysis time; however, the antioxidant activity of oligosaccharide from hemicellulose fraction (OSF) increased as the hydrolysis time was prolonged. OSF and OSC showed higher increase in viable counts compared to the control. As a result, oligosaccharides produced from buckwheat hull by enzymatic hydrolysis showed antioxidant activity and prebiotic effects. It is suggested that utilization of oligosaccharides produced from buckwheat hull as functional food materials may be improved when hydrolysis time and conditions are controlled for this purpose.

Establishment of Efficient Microinjection System in the Porcine Embryos

  • Malaweera, Don Buddika Oshadi;Ramachandra, Sisitha;Wu, Jun-Bo;Oh, Seung-Kyu;Kim, Seung-Hwan;Kim, Seok-Joong;Shin, Sang-Tae;Cho, Jong-Ki
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • Transcription activator like effector nucleases (TALENs) are artificial restriction enzymes generated by fusing a TALE DNA binding domain to a DNA cleavage domain which remove and introduce specific genes to produce transgenic animals. To investigate the efficient laboratory techniques for the injection of TALEN mRNA, pEGFP-N1 commercial plasmid were microinjected into porcine parthenogenetic and in vitro fertilization (IVF). In Experiment 1, to investigate injection time, compared 4 different time durations (2 hr, 4 hrs, 6 hrs & 8 hrs) after post activation of parthenogenetic embryos and after 6 hrs of co-incubation with sperms in IVF embryos. There were significant difference (P<0.05) in development to the blastocysts (4.4, 8.9, 3.9, 0.6%), GFP expression in blastocysts (1.3, 5.7, 2.3, 0.0%) which injected after post activation of 4 hrs compared with other 3 groups. IVF embryos after 2 hrs and 4 hrs injected were expressed GFP significantly higher than rest of two groups (P<0.05). In Experiment 2, compared development of 2 different concentrations ($20ng/{\mu}l$ and $50ng/{\mu}l$) of EGFP injection. There were significant difference (P<0.05) between two treatments which has higher cleavage (58.8 vs 41.9%), blastocysts development rate (13.0 vs 11.1%) and GFP expressed blastocysts (5.7 vs 0.0%) in $20ng/{\mu}l$ than the $50ng/{\mu}l$ in parthenogenetic embryos. In IVF embryos, only $20ng/{\mu}l$ injected embryos were expressed GFP (4.2%) after 7 days of incubation and 77.3 vs 64.7% of cleavage, 26.4 vs 23.5% development to blastocysts. In Experiment 3, three different volumes (5, 10 and 20 pl) were microinjected into porcine embryos to determine the most appropriate volume. Out of 3 groups, significantly higher development rates of cleavage (68.3, 58.0, 29.3%), blastocysts (11.7, 12.7, 0.5%) and GFP expressed blastocysts (2.9, 7.8, 0.0%) were shown in the 10 pl group (P<0.05). In conclusion, these results imply that $20ng/{\mu}l$ concentration, 10 pl of volume and injection at 4 hrs after post activation for parthenogenetic and 2~4 hrs after IVF, $20ng/{\mu}l$ concentration and 10 pl volume for IVF embryos were more effective microinjection conditions.

Effects of Nutrient Specifications and Xylanase Plus Phytase Supplementation of Wheat-based Diets on Growth Performance and Carcass Traits of Broiler Chicks

  • Selle, P.H.;Huang, K.H.;Muir, W.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1501-1509
    • /
    • 2003
  • The simultaneous addition of xylanase (5,600 EXU/kg) and phytase (500 FTU/kg) feed enzymes to wheat-based broiler diets was investigated. Starter, grower and finisher diets, with three tiers of nutrient specifications, were fed to 1,440 broiler chicks kept on deep litter from 1-42 days post-hatch, without and with xylanase plus phytase, to determine the effects of diet type and enzyme supplementation on growth performance. The nutrient specifications of type A diets were standard; energy density and protein/amino acid levels were reduced on a least-cost basis to formulate type B diets and further reduced to type C diets. Phosphorus (P) and calcium (Ca) levels were adjusted in supplemented diets. From 1-42 days post-hatch, diet type significantly influenced growth performance. Birds on type C diets had lower growth rates (2,429 vs. 2,631 g/bird; p<0.001), higher feed intakes (4,753 vs. 4,534 g/bird; p<0.005) and less efficient feed conversion (1.96 vs. 1.72; p<0.001) than birds offered type A diets. Enzyme supplementation increased growth rates by 3.2% (2,580 vs. 2,501 g/bird; p<0.005) and improved feed efficiency by 2.7% (1.80 vs. 1.85; p<0.05) over the entire feeding period. There were no interactions between diet type and enzyme supplementation. At 21 days, 5 out of 30 birds per pen were transferred to cages to ascertain treatment effect on apparent metabolisable energy (AME) and nitrogen (N) retention. Xylanase plus phytase enhanced AME (13.48 to 13.91 MJ/kg DM; p<0.001) and N retention (56.3 to 59.7%; p<0.005). Carcass and breast weights of the caged birds were determined following commercial processing. Diet type significantly influenced breast weight, carcass weight and yield. Birds offered Type A diets, in comparison to Type C diets, supported heavier breast (467 vs. 424 g; p<0.001) and carcass weights (1,868 vs. 1,699 g; p<0.001) with superior carcass yields (71.8 vs. 70.6%; p<0.005). Enzyme addition increased carcass weight by 3.9% (1,752 vs. 1,821 g; p<0.005) and breast weight by 5.8% (431 vs. 456 g; p<0.01) without influencing yields. Feed ingredient costs per kg live weight gain and per kg carcass weight indicated that enzyme addition was economically feasible, where supplementation of Type A diets generated the most effective results. Importantly, soluble and total non-starch polysaccharide and phytate contents of the wheat used were typical by local standards. This study confirms the potential of supplementing wheat-based broiler diets with xylanase plus phytase but further investigations are required to define the most appropriate inclusion rates and dietary nutrient specifications in this context.

Effect of Hydrothermal and Enzymatic Treatments on the Physicochemical Properties of Waxy Maize Flour (열수 및 효소 처리에 의한 찰옥수수가루의 물리화학적 특성)

  • Lee, Dong-Jin;Choi, So-Mang;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • Physicochemical properties of waxy maize flours prepared by hydrothermal and enzymatic treatments were evaluated. Waxy maize flours were hydrothermally treated using heat-moisture treatment (HMT) and annealing (ANN) and enzymatically treated using commercial enzymes (cellulase, proteinase, and pectinase). The HMT-modified waxy maize flours had low water absorption index (WAI), melting enthalpy, viscosity, and crystallinity. However, ANN-modified and enzymatically modified waxy maize flours had high WAI, melting enthalpy, and viscosity. X-ray diffraction analysis of ANN-modified and enzymatically modified waxy maize flours revealed a typical A-type pattern and displayed sharper crystalline peaks than those observed for the control groups (native waxy maize flours). In contrast, the crystallinity of HMT-modified waxy maize flours were decreased by hydrothermal treatment.

Characteristics of Enzymatic Hydrolysates of Rice Bran and Rice Protein by Mixing Ratio and Hydrolysis Times (미강과 쌀 단백질의 비율과 분해 시간에 따른 효소분해물의 품질 특성)

  • Seon, Yoo Kyung;Goo, Hoo Mo;Park, Kwang Kun;Yang, Eun Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1460-1466
    • /
    • 2016
  • This study was conducted to develop a savory ingredient using rice material. We made hydrolysates with ratios of rice bran and rice protein of 4:0, 3:1, 2:2, and 1:3 (w/w) using commercial enzymes, and then investigated their quality properties. At a ratio of 3:1, nitrogen degradation ratio (NDR), savory taste, and overall acceptability were the highest compared to other ratios. Rice bran and rice protein with a ratio of 3:1 were hydrolyzed for 13 days, and characteristics of the hydrolysate were investigated after 3, 5, 7, 10, and 13 days. Total nitrogen, amino nitrogen, and NDR of the hydrolysate after 10 days were higher than those of other hydrolysates. SDS-PAGE showed that the molecular weight of the hydrolysate peptide became smaller as hydrolysis time increased. Glutamic acid content was highest among all amino acids in the hydrolysate for 13 days. Amino acids related to bitter taste decreased from 5 to 13 days, whereas amino acids related to sweet taste substantially increased over time. Sensory evaluation showed that the hydrolysate after 10 days was best. These results suggest that rice bran and rice protein at a mixing ratio of 3:1 and hydrolysis for 10 days were optimal hydrolysis condition for development of natural savory ingredients.

Structure-activity Analysis of Benzylideneacetone for Effective Control of Plant Pests (벤질리덴아세톤 화학구조 변이에 따른 생리활성 변화 분석 및 식물 병해충 방제 효과)

  • Seo, Sam-Yeol;Jun, Mi-Hyun;Chun, Won-Su;Lee, Sung-Hong;Seo, Ji-Ae;Yi, Young-Keun;Hong, Yong-Pyo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.50 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • Benzylideneacetone (BZA) is a compound derived from culture broth of an entomopathogenic bacterium, Xenorhabdus nematophila (Xn). Its immunosuppressive activity is caused by its inhibitory activity against eicosanoid biosynthesis. This BZA is being developed as an additive to enhance control efficacy of other commercial microbial insecticides. This study was focused on the enhancement of the immunosuppressive activity of BZA by generating its chemical derivatives toward decrease of its hydrophobicity. Two hydroxylated BZA and one sugar-conjugated BZA were chemically synthesized. All derivatives had the inhibitory activities of BZA against phospholipase $A_2$ ($PLA_2$) and phenoloxidase (PO) of the diamondback moth, Plutella xylostella, but BZA was the most potent. Mixtures of any BZA derivative with Bacillus thuringiensis (Bt) significantly increased pathogenicity of Bt. BZA also inhibited colony growth of four plant pathogenic fungi. However, BZA derivatives (especially the sugar-conjugated BZA) lost the antifungal activity. These results indicated that BZA and its derivatives inhibited catalytic activities of two immune-associated enzymes ($PLA_2$ and PO) of P. xylostella and enhanced Bt pathogenicity. We suggest its use to control plant pathogenic fungi.

Preparation of an Immobilized Enzyme for Enhancing Thermostability of the Crude Proteinase from Fish Intestine (어류 내장 유래 단백질 분해효소로부터 열안정성 개선을 위한 고정화 효소의 제조)

  • 전유진;박표잠;변희국;송병권;김원석;김세권
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.627-637
    • /
    • 1998
  • In order to utilize tuna pyloric caeca among fish intestines wasted when treated raw fish in fish processing manufactory, a crude enzyme with high proteolytic activity was extracted and its optimum condition were investigated. An immobilized enzymes also were prepared by adsorption method to enhance thermostability of the crude proteinase. The yield of the crude proteinase was approximately 2.7% on dry basis. The proteolytic activity for casein was 0.54 U/mg protein, for BTEE 1.10 U/mg protein, and for BAEE 2.69 U/mg protein. It was almost similar to that of the commercial trypsin purified. Optimum hydrolysis activity of the crude proteinase was about 80%, as the degree of hydrolysis for casein, at pH 10.0 and 45$^{\circ}C$ for 12 hrs. Also, when the crude proteinase was immobilized on DEAE-Cellulose and chitin, the residual activities remained after 7 days of pre-incubation time were maintained about 90% or more and their thermostabilities were enhanced by about 50%, compared with the native enzyme.

  • PDF