• Title/Summary/Keyword: commercial concrete

Search Result 301, Processing Time 0.027 seconds

Review of Transverse Steel Design in Continuously Reinforced Concrete Pavement through Finite Element Analysis (유한요소해석을 이용한 연속철근콘크리트 포장의 횡방향 철근 설계 검토)

  • Choi, Pangil;Ha, Soojun;Chon, Beom Jun;Kil, Yong Su;Won, Moon-Cheol
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 2014
  • PURPOSES : This paper numerically evaluates the contribution of transverse steel to the structural behavior of continuously reinforced concrete pavements to understand the role of transverse steel. METHODS : Two-lane continuously reinforced concrete pavements with and without transverse steel were analyzed through finite element analysis with the aid of commercial finite element analysis program DIANA; the difference in their structural behavior such as deflection, joint opening, and stress distribution was then evaluated. Twenty-node brick elements and three-node beam elements were used to model concrete and steel, respectively. Sub-layers were modeled with horizontal and vertical tensionless spring elements. The interactions between steel and surrounding concrete were considered by connecting their nodes with three orthogonal spring elements. Both wheel loading and environmental loading in addition to self-weight were considered. RESULTS : The use of transverse steel in continuously reinforced concrete pavements does not have significant effects on the structural behavior. The surface deflections change very little with the use of transverse steel. The joint opening decreases when transverse steel is used but the reduction is quite small. The transverse concrete stress, rather, increases when transverse steel is used due to the restraint exerted by the steel but the increase is quite small as well. CONCLUSIONS : The main role of transverse steel in continuously reinforced concrete pavements is supporting longitudinal steel and/or controlling unexpected longitudinal cracks rather than enhancing the structural capacity.

Behaviour of Lightweight Concrete Slab Reinforced with GFRP Bars under Concentrated Load (집중하중을 받는 GFRP 보강근 경량콘크리트 슬래브의 거동)

  • Son, Byung-Lak;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • This paper is a preliminary study to apply the lightweight concrete slabs reinforced with GFRP (glass fiber reinforced polymer) bars to the bridge deck slabs or some other concrete structures. So, some different behaviors between the conventional steel reinforced concrete slab and the lightweight concrete slab reinforced with GFRP bars were investigated. For this purpose, a number of slabs were constructed and then the three point bending test and numerical analysis for these slabs were performed. The flexural test results showed that the lightweight concrete slabs reinforced with GFRP bars were failed by the shear failure due to the over-reinforced design. The weight and failure load of the GFRP bar reinforced lightweight concrete slabs were 72% and 58% of the steel reinforced concrete slab with the same dimensions, respectively. Results of the numerical analysis for these slabs using a commercial program, midas FEA, showed that the load-deflection curve could be simulated well until the shear failure of the slabs, but the applied loads and the deflections continuously increased even beyond the shear failure loads.

Evaluations of Structural Performance of Recycled Aggregate Concrete According to Replacement Ratios (치환율에 따른 순환골재 콘크리트의 구조성능 분석)

  • Nam, Jin-Won;Kim, Ho-Jin;Kim, Sung-Bae;Kim, Jang-Ho Jay;Byun, Keun Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.54-64
    • /
    • 2007
  • This study is a fundamental research in order to establish the design code of recycled aggregate concrete structure. The structural properties of recycled aggregate concrete such as flexure, shear, fatigue, compression, and bond development are experimentally investigated and confirmed. In this study, laboratory-scale reinforced concrete beam, column, and pull-out test specimens using recycled coarse aggregate are manufactured. Then, the structural performances of recycled aggregate concrete according to replacement ratios of recycled coarse aggregate are evaluated. Also, finite element analysis using commercial code DIANA is carried out to predict the test results and the analysis results are compared with test results in this study. Structural test results showed that the structural performances of recycled aggregate concrete specimens with 60% replacement ratio are reduced by approximately 15-20%. These results indicated that the replacement ratio of recycled coarse aggregate within 30% is a suitable to use for structural members. The results of finite element analysis showed that the specimens with 30% replacement ratio possessed similar or more excellent structural performance than normal concrete specimens. However, recycled aggregate concrete with 60% replacement ratio of recycled coarse aggregate must be carefully considered for structural applications due to significant decrease of the failure loads.

  • PDF

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Research on the impact effect of AP1000 shield building subjected to large commercial aircraft

  • Wang, Xiuqing;Wang, Dayang;Zhang, Yongshan;Wu, Chenqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1686-1704
    • /
    • 2021
  • This study addresses the numerical simulation of the shield building of an AP1000 nuclear power plant (NPP) subjected to a large commercial aircraft impact. First, a simplified finite element model (F.E. model) of the large commercial Boeing 737 MAX 8 aircraft is established. The F.E. model of the AP1000 shield building is constructed, which is a reasonably simplified reinforced concrete structure. The effectiveness of both F.E. models is verified by the classical Riera method and the impact test of a 1/7.5 scaled GE-J79 engine model. Then, based on the verified F.E. models, the entire impact process of the aircraft on the shield building is simulated by the missile-target interaction method (coupled method) and by the ANSYS/LS-DYNA software, which is at different initial impact velocities and impact heights. Finally, the laws and characteristics of the aircraft impact force, residual velocity, kinetic energy, concrete damage, axial reinforcement stress, and perforated size are analyzed in detail. The results show that all of them increase with the addition to the initial impact velocity. The first four are not very sensitive to the impact height. The engine impact mainly contributes to the peak impact force, and the peak impact force is six times higher than that in the first stage. With increasing initial impact velocity, the maximum aircraft impact force rises linearly. The range of the tension and pressure of the reinforcement axial stress changes with the impact height. The perforated size increases with increasing impact height. The radial perforation area is almost insensitive to the initial impact velocity and impact height. The research of this study can provide help for engineers in designing AP1000 shield buildings.

Analytical Study on the Fire Resistance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내화 성능에 대한 해석 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Jong Sup;Kim, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.461-470
    • /
    • 2009
  • A column resisting axial load and seismic load is one of the main members in a structural system. The heated column by event of a fire can lose its strength and it may damage its structural system or cause the collapse of the entire structural system. In this study, the fire resistance capacity of internally confined hollow concrete filled tube (ICH CFT) column was investigated. In an ICH CFT column, the yield strength of the external tube is important as a concrete filled tube (CFT) column because the external tube confines the filled concrete and the strength of the column depends on the confined effect. A study was performed by finite element analyses considering the confined effect and material nonlinearity as the temperature changes by the fire. The hollow ratio, the thickness of the external tube, and the strength of concrete were selected as the parameters for the analyses. The analyses were performed by using a commercial FEA program (ABAQUS) and nonlinear concrete model program. The analysis results showed that the hollow ratio and the strength of concrete mainly affect the fire resisting capacity of an ICH CFT column.

Damage mechanism and stress response of reinforced concrete slab under blast loading

  • Senthil, K.;Singhal, A.;Shailja, B.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.315-338
    • /
    • 2019
  • The numerical investigations have been carried out on reinforced concrete slab against blast loading to demonstrate the accuracy and effectiveness of the finite element based numerical models using commercial package ABAQUS. The response of reinforced concrete slab have been studied against the influence of weight of TNT, standoff distance, boundary conditions, influence of air blast and surface blast. The results thus obtained from simulations were compared with the experiments available in literature. The inelastic behavior of concrete and steel reinforcement bar has been incorporated through concrete damage plasticity model and Johnson-cook models available in ABAQUS were presented. The predicted results through numerical simulations of the present study were found in close agreement with the experimental results. The damage mechanism and stress response of target were assessed based on the intensity of deformations, impulse velocity, von-Mises stresses and damage index in concrete. The results indicate that the standoff distance has great influence on the survivability of RC slab against blast loading. It is concluded that the velocity of impulse wave was found to be decreased from 17 to 11 m/s when the mass of TNT is reduced from 12 to 6 kg. It is observed that the maximum stress in the concrete was found to be in the range of 15 to $20N/mm^2$ and is almost constant for given charge weight. The slab with two short edge discontinuous end condition was found better and it may be utilised in designing important structures. Also it is observed that the deflection in slab by air blast was found decreased by 60% as compared to surface blast.

An Experimental Study on the Semi-Adiabatic Temperature Rise Test of Concrete Considering Outside Temperature and Specimen Size (외기온도 및 시험체 크기를 고려한 콘크리트의 간이-단열온도 상승시험에 관한 실험적 연구)

  • On, Jeong-Kwon;Kim, Young-Sun;Moon, Hyoung-Jae;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.563-571
    • /
    • 2021
  • Recently, due to the increase in high-rise apartment and residential-commercial complex buildings, a number of mega-class mass concrete members with a thickness of 3m or more have been designed. As the construction of mass concrete such as transfer beam and slab is increasing not only in foundation members but also in special structures, research on reducing temperature cracks in mass concrete is being conducted. To review temperature cracks in mass concrete, it is important to review the thermal properties of concrete, but it is difficult to use an adiabatic temperature rise tester in the field, so the semi-adiabatic temperature rise test is mainly used. In this study, to improve the accuracy of the results of concrete heat characteristics gained by the semi-adiabatic temperature rise test, various factors affecting heat loss compensation and methods were reviewed and presented.

Screening Assessment of Radiological Effect From Clearance of Decommissioning Concrete Waste Based Upon Recycling Framework of Construction Waste in Korea (국내 건설폐기물 재활용 체계를 반영한 해체 콘크리트 폐기물 자체처분 방사선 영향 예비평가)

  • Lim, Kun-Su;Cheong, Jae Hak;Whang, Joo Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.441-454
    • /
    • 2018
  • Since the permanent shutdown of Kori Unit 1 in 2017, a full-scale decommissioning project for a commercial nuclear reactor has been approaching. It is estimated that about 160,000 t of low-activity concrete waste will be produced from decommissioning of one unit of this commercial nuclear power reactor. Accordingly, it is necessary to review whether the effectiveness of the current regulatory framework for clearance waste (i.e. waste stream that meets activity concentration guidelines or dose criteria for clearance set forth in NSSC Notice No. 2017-65) can be maintained for the clearance of a bulk amount of concrete waste. In this regard, the IAEA SRS No. 44, which was used as a basis for revision of the Korean clearance regulations, is thoroughly analyzed and the radiological effects from four different clearance scenarios, along with input values and parameters derived from industrial practices in Korea, were evaluated. Though it is shown that the maximum annual dose from most recycling scenarios will be less than the clearance dose criterion for the normal scenario (i.e. an order of magnitude of $0.01mSv{\cdot}y^{-1}$), the radiation dose, estimated with conservative assumptions for the banking scenario, may exceed the above clearance dose criteria. Therefore, for safe and sustainable clearance of the bulk amount of concrete waste, it is required to diversify the concrete waste processors, perform more detailed site-specific assessment, and apply limiting conditions to the banking scenario.

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.