Cyberbullying, i.e., posting malicious comments online, has been identified as a critical issue in the online and social media context. It has become prevalent on a global scale, which happens across all ages. As a way to reduce and prevent cyberbullying, it is important to promote online prosocial behavior. In line with the concept of online prosocial behavior, we suggest posting benevolent comments against posting malicious comments as a new type of online prosocial behavior, which can combat cyberbullying and facilitate positive online culture. This study thus aims to analyze what motivates people to post benevolent comments in the online context. Based on interview methods, we extracted seven driving factors (self-presentation, pleasure, social contribution, emotional support, reputation, monetary reward, and reciprocity) and two inhibiting factors (social anxiety and effort) of posting benevolent comments online. This study has its theoretical contribution in exploring the motivation factors leading to the posting of benevolent comments by extending the concept of online prosocial behavior. It also has its practical implications by providing guidance for promoting prosocial behavior in the online context.
Through the translation and comparative study of the enriching blood and nourishing vital essence(補陰血方劑) in "The Elimination & Supplement about the Famous Prescription Comments(刪補名醫方論)" of "The Golden Mirror of Medicine(醫宗金鑑)" with "The Famous Prescription Comments on Ancient and Modern Times(古今名醫方論)", we confirmed that about 50% of the sentences from "The Elimination & Supplement about the Famous Prescription Comments(刪補名醫方論)" were quoted in "The Famous Prescription Comments on Ancient and Modern Times(古今名醫方論)", and that many of the text were not quoted unchanged, but were revised and supplemented. In organization, the prescription with the fewer number of component drugs is given first, followed by that with more component drugs, and that with similar component drugs is explained subsequently to facilitate understanding. In the prescription notes, it is emphasized that when enriching blood, the invigorative method(補氣法) is very important and that cold or pungent herb should be very carefully used.
Ha Ki Tae;Kim Young Mi;Jeong Sang Shin;Kim June Ki;Choi Dall Yeong
Journal of Physiology & Pathology in Korean Medicine
/
v.17
no.1
/
pp.44-49
/
2003
The textual comments on Shanghanlun and Jinguiyaolue were found in Hyangyakjipsung-bang, the representative medical book in the early period of Choson Dynasty. In all 57 chapters of the book, 17 chapters are related to those comments, and only one comment is quoted from all chapters except the chapter of 'Shanghanlun' and 'Jinguiyaolue'. As classified the comments by citation order, Jinguifang had 14 comments, Zhangzhongjing had 7 comments, Zhangzhongjing had 4 comments, and Jinguiyuhan had 1 comment. Comparing to the present version, 16 comments were qouted from Jinguiyaolue and 7 comments were quoted from Shanghanlun and 1 comment was quoted from Jinguiyuhanjing, but the source of 2 comments were not identified. Especially the 1 comment from Jinguiyuhanjing not only shows the importing date of the book into Korea, but also proofs the importance of the book which can refute the supposed source of the book as a reprint by Chenshijie in China. This results showed that Zhangzhongjing's books, which has imported before the early period of Chosun Dynasty, had an influence on Korean Medicine. As a result, further research on the medical books in the early period of Chosun Dynasty excepting Hyangyakjipsung-bang will be necessary.
Problems caused by malicious comments occur on many social media. In particular, YouTube, which has a strong character as a medium, is getting more and more harmful from malicious comments due to its easy accessibility using mobile devices. In this paper, we designed and implemented a YouTube malicious comment detection system to identify malicious comments in YouTube contents through LSTM-based natural language processing and to visually display the percentage of malicious comments, such commentors' nicknames and their frequency, and we evaluated the performance of the system. By using a dataset of about 50,000 comments, malicious comments could be detected with an accuracy of about 92%. Therefore, it is expected that this system can solve the social problems caused by malicious comments that many YouTubers faced by automatically generating malicious comments statistics.
We investigate the effect of comment history disclosure on portal news comments. Specifically, based on the scraped news comments from Naver and Daum (two leading Korean news portals), we employ the difference-in-differences estimator to empirically tease out the impact of the comment history disclosure policy implemented in Naver on its news comments. Our result shows that the policy implementation significantly increased the length and the positiveness of online news comments but did not affect their quality.
Journal of Advanced Marine Engineering and Technology
/
v.34
no.6
/
pp.871-879
/
2010
In this paper, we present a system that classifies comments on a news article into a user opinion called a polarity (positive or negative). The system is a kind of document classification system for comments and is based on machine learning techniques like support vector machine. Unlike normal documents, comments have their body that can influence classifying their opinions as polarities. In this paper, we propose a feature weighting scheme using such characteristics of comments and several resources for opinion classification. Through our experiments, the weighting scheme have turned out to be useful for opinion classification in comments on Korean news articles. Also Korean character n-grams (bigram or trigram) have been revealed to be helpful for opinion classification in comments including lots of Internet words or typos. In the future, we will apply this scheme to opinion analysis of comments of product reviews as well as news articles.
In recent years, Weblog has become the most typical social media for citizens to share their opinions. And, many Weblogs reflect several social issues. There are many internet users who actively express their opinions for internet news or Weblog articles through the replying comments on online community. Hence, we can easily find internet blogs including more than 10 thousand replying comments. It is hard to search and explore useful messages on weblogs since most of weblog systems show articles and their comments to the form of sequential list. In this paper, we propose a visualizing and clustering system called TRIB (Telescope for Responding comments for Internet Blog) for a large set of responding comments for a Weblog article. TRIB clusters and visualizes the replying comments considering their contents using pre-defined user dictionary. Also, TRIB provides various personalized views considering the interests of users. To show the usefulness of TRIB, we conducted some experiments, concerning the clustering and visualizing capabilities of TRIB, with articles that have more than 1,000 comments.
Purpose Recently, as a new business marketing tool, short form content focused on fun and interest has been shared as hashtags. By extracting positive and negative keywords from media audiences through comment analysis of social media news, various stakeholders aim to quickly and easily grasp users' opinions on major news. Design/methodology/approach YouTube videos were searched using the YouTube Data API and the results were collected. Video comments were crawled and implemented as HTML elements, and the collection results were checked on the web page. The collected data consisted of video thumbnails, titles, contents, and comments. Comments were word tokenized with the R program, comparing positive and negative dictionaries, and then quantifying polarity. In addition, social network analysis was conducted using divided positive and negative comments, and the results of centrality analysis and visualization were confirmed. Findings Social media users' opinions on issue news were confirmed by analyzing and visualizing the centrality of keywords through social network analysis by dividing comments into positive and negative. As a result of the analysis, it was found that negative objective reviews had the highest effect on information usefulness. In this way, previous studies have been reaffirmed that online negative information has a strong effect on personal decision-making. Corporate marketers will analyze user comments on social network services (SNS) to detect negative opinions about products or corporate images, which will serve as an opportunity to satisfy customers' needs.
Journal of the Korean Society of Clothing and Textiles
/
v.47
no.5
/
pp.873-890
/
2023
This study analyzed users' emotional responses to VI character design through YouTube comments. The researchers applied text-mining to analyze 116,375 comments, focusing on terms related to character design and characteristics of VI. Using the BERT model in sentiment analysis, we classified comments into extremely negative, negative, neutral, positive, or extremely positive sentiments. Next, we conducted a co-occurrence frequency analysis on comments with extremely negative and extremely positive responses to examine the semantic relationships between character design and emotional characteristic terms. We also performed a content analysis of comments about Miquela and Shudu to analyze the perception differences regarding the two character designs. The results indicate that form elements (e.g., voice, face, and skin) and behavioral elements (e.g., speaking, interviewing, and reacting) are vital in eliciting users' emotional responses. Notably, in the negative responses, users focused on the humanization aspect of voice and the authenticity aspect of behavior in speaking, interviewing, and reacting. Furthermore, we found differences in the character design elements and characteristics that users expect based on the VI's field of activity. As a result, this study suggests applications to character design to accommodate these variations.
As the individual participation in online news sites proliferates, the importance of online news comments has been increasing. Social comment services which help people leave comments on news articles using their own SNS (social networking site) accounts have gained popularity recently. Using data gathered from an online news site, this study, therefore, (1) identifies factors differentiating social comments from general comments, (2) examines how social comments are significantly different from general comments in terms of each factor, (3) and further validates how the social comments' characteristics vary among different type of SNS. Then, we investigated this study by applying t-test, ANOVA, and Duncan test of SPSS Statistics. Our results provide insights on the significant differences in all the factors between general and social comments. We also found that there is a significant difference between Facebook and Twitter groups among three types of SNS. The findings of this study would help assess the actual benefit of social comment services as they may provide us with several valuable leads to solve the malicious comments issue. Moreover, they would suggest the need to apply this service to other areas, such as online environments in private and public sectors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.