• Title/Summary/Keyword: comfort properties

Search Result 194, Processing Time 0.02 seconds

An Analysis of Effective Variables on Clothing Wear Comfort Using Linear Structural Equation (선형구조방정식을 이용한 의복착용쾌적감 영향요인 분석)

  • 이은주;조정숙;이정주;최종명;조길수
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.47-52
    • /
    • 1997
  • This study was carried out to investigate effects of fabric properties and the changes of microclimates on comfort sensations and to identify effective varuables on clothing wear comfort sensations. A wied range of nontreated and functionally treated woven fabrics, knits, and nonwoven fabrics and test garments made of them were used as specimens. Linear structural equation was used to analyze causal relation among the variables on a path diagram. The results were as follows: 1. Almost of causal relations among variables were significant excdpt the effects of fabric properties including air permeability and water-vapor permebility on the changes of microclimate temperature. 2. Fabric properties were most effective variables on clothing wear comfort sensations including thermal sensation, subjeceive wettedness, and overall comfort and therefore comfort sensations and fabric properties were identified for improving clothing comfort.

  • PDF

The Effect of Structural Characteristics of Selected Wool Fabrics on Mechanical and Thermal Properties (직물의 구성인자가 보온성에 미치는 영향)

  • Jun, Byung-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • This study was performed to determine the effect of structural characteristics of selected wool fabrics on mechanical and thermal properties. 52 wool fabrics, including 18 plain woven fabrics and 34 twill and satin woven fabrics were used as samples woven with various weft density for the study. Several physical characteristics such as mechanical properties, keeping warmth ratio of wool fabrics were measured. Data analyses including 1) analysis of tactile and thermal comfort sensation were performed. the following were obtained from the results: The main factors affecting keeping warmth ratio were thickness and bulk density. The keeping warmth ratio of samples increased with increasing thickness and decreasing bulk density of samples. In addition, coefficient of friction of the samples increased with keeping warmth ratio of samples. The above results show that wearing sensation and comfort properties of fabrics are changed depending on the end-use, and thus, above results can be used to manufacture of fabrics for specific end-use with high comfort properties.

  • PDF

Image, improvements, and wear comfort of hiking gear of adults in their 40s and 50s (4,50대 성인의 등산복에 대한 이미지, 개선점 및 착용쾌적감)

  • Yoo, Hwasook
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.301-311
    • /
    • 2014
  • This study finds information about the image and improvements of hiking gear and examines the influence of heat moisture, psychology, tactile sensation, and mobility/pressure related properties on wear comfort. The relationships of the four related properties and personal characteristics (such as sex, age, BMI and sensitivity) were also checked. Questionnaires were distributed to 400 people in their 40s and 50s; subsequently, 260 were used for data analysis. The questionnaires were comprised of questions about the general hiking characteristics, images and improvements in hiking gear, influence of the four properties on wear comfort, and demographic characteristics. Data were analyzed by frequency analysis, correlation analysis, ANOVA, T-test using SPSS 21 IBM for Windows. The results of this study are as follows. It was shown that people in their 40s and 50s usually went hiking two to four hours with friends or family once to three times a month. Jacket had the largest number of wearing frequency, followed by pants, t-shirts, and inner wear. Consumers' images of hiking gear were positive and the demands for improvements in hiking gear were price, unique design, and vivid color. The order of influence of the four properties on wear comfort was heat moisture, mobility/pressure, tactile sensation, and psychology related properties. The four properties of wear comfort were not influenced significantly by consumer sex, age, BMI, and sensibility.

A Study on Relationship of Fabric Physical Properties and Subjective Properties for Clothing Comfort (피복재료의 물리적특성과 주관적착용감과의 관계연구)

  • Choi Chul Ho;Park Woo Mee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.2
    • /
    • pp.29-35
    • /
    • 1986
  • The main purpose of the study was to investigate relationships between subjective evaluation of comfort/discomfort and tactile sensation. It was also attempted to analyse physical properties of fabric, hence to find physical factors which have effects on wearing- comfort. The results were as follows; 1. Polyester fabric B Type ranked the highest on subjective comfort scale of T-shirts. 2. Scratchiness and flexural rigidity among subjective factors were important on overall comfort sensations of the subjects. 3, In winter, subjective factors, suchas Soratchiness, Heaviness & Flexural Rigidity, were significantly correlated with objective factors of Scratchiness, Thickness & Weight, Stiffness, respectively. 4. In summer, subjective factors such as warmth, Heaviness, Clammy & Cling Tension, Flexural Rigidity, were significantly correlated with objective factors of Thermal Insulation, Thickness & Weight, Cling Tension and stiffness, respertively. 5. Scratchiness, Weight, Stiffness & Thermal Insulation among objective factors were important on overall comfort sensation of the subjects.

  • PDF

RESEARCH ON THE RELATIONSHIP BETWEEN RIDING COMFORT AND CAR SEAT MATERIALS

  • Kubo, Mitsunori;Terauchi, Fumio;Aoki, Hiroyuki;Suzuki, Tsutomu;Isobe, Masahiro;Okubo, Kazuhiko
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.312-317
    • /
    • 2000
  • The relationship between riding comfort and the properties of flexible polyurethane foam used in car seats was quantitatively illustrated through vibration experiments with humans sitting in car seats, which were vertically shaken by vibrator. Riding comfort was estimated according to SD (Semantic Differential)-method using questionnaire, and was analyzed with a factor analysis which demonstrated the principal factors of riding comfort. At the same time, riding comfort was related to the properties of the flexible polyurethane foam with coefficients of correlation. It was also related to the behaviour of its vibration of humans sitting in the seats. As a result, it was demonstrated that the relationship between riding comfort and the flexible polyurethane foam properties varies according to the frequency of the vibration shaking the human sitting in the seat. and it was demonstrated that the frequency dependence of the relationship is strongly affected by the physical changes of the vibration modes of the human-seat vibration system.

  • PDF

A Product-Focused Process Design System(PFPDS) for High Comforts Artificial Leather Fabrics (고감성 인조피혁개발을 위한 제품중심 공정설계 시스템)

  • Kim, Joo-Yong;Park, Baek-Soung;Lee, Chae-Jung
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.69-74
    • /
    • 2008
  • In this paper, a comfort evaluation system based on a product-focused process design (PFPD) has been proposed for high comforts interior seat covers. Correlations between comforts properties and physical/thermal properties of interior seat covers were examined by combining traditional regression analysis and data mining techniques. A skin sensorial comfort of leather samples was evaluated by only human tactile sensation. The adjectives of leather car seat covers are 'Soft', 'Sticky' and 'Elastic'. Thermo-physiological comfort properties of leather samples were evaluated by only human tactile sensation. The adjectives of leather car seat covers are 'Coolness to the touch' and 'Thermal and humid'. Skin sensorial comforts of cloth samples were evaluated by only human tactile sensation. The adjectives of cloth car seat covers are 'Soft', 'Smooth', 'Voluminous' and 'Elastic'. Thermo-physiological comforts of cloth samples were evaluated by only human tactile sensation. The adjectives of cloth car seat covers are 'Coolness to the touch' and 'Thermal and humid'.

The Wearing Satisfaction and Comfort-Related Properties of Highschool Girls' Summer Uniforms and The Fabrics (여고생 하복의 착용만족도 및 하복용 직물의 쾌적성 평가)

  • 최종명;김희숙
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.11
    • /
    • pp.105-114
    • /
    • 2000
  • The purpose of this study was to investigate the wearing satisfaction of highschool girls’summer uniforms, and to evaluate the comfort-related properties of fabrics used in the uniforms. The subjects were 441 female high school students attending three different schools in Chongju city. The data was collected using self-administered questionnaires to measure the wearing satisfaction of summer school uniforms. Factor analysis, t-test, and F-test were used for data analysis. The heat and moisture transfer properties and air permeable properties of their fabrics were evaluated to measure as comfort-related properties. 1. Most students were wearing blouses made of polyester/rayon blended fabrics and skirts made of 50% wool and 50% polyester blended fabrics. 2. Clothing care and management, and appearance of summer school uniform were assessed positively, while style and design, and the level of comfort were assessed negatively. 3. The subfactors of wearing satisfaction varied according to school, style and design, and fabrics of high school girls’summer uniforms. 4. PET fabrics were rated as having a lower value of thermal retention and a higher value of air permeability than other blouse fabrics. 5. There were not differences significantly in thermal properties according to skirt materials.

  • PDF

Effect of Hydrophilic and Hydrophobic Finishes of Fabrics on the Stratum Corneum Water Content and Comfort Properties (직물의 친수 및 소수화 처리가 피부잔류수분량 및 쾌적감에 미치는 영향)

  • Kahng, Soo Ma;Kim, Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.1
    • /
    • pp.151-161
    • /
    • 1993
  • The purpose of this study was to investigate the effect of hydrophilic finish for polyester (PET) fabric and hydrophobic finish for cotton fabric on the water transport and comfort properties. Polyester fabric was treated with 10% sodium hydroxide solution to impart hydrophilicity. Cotton fabric was sprayed with Scotch-gard$^{(R)}$ water and oil repellent finish to impart hydrophobicity. Porosity, air permeability, contact angle, wickability and water vapor transport rate (WVTR) were measured to determine the water transport properties of fabrics. To compare the comfort properties of treated and untreated fabrics, wear test was performed by putting fabric patches on the upper back: stratum corneum water content (SCWC), subjective wettedness and comfort rating were determined. The results were as follows: (1) The contact angle of water on treated polyester fabric was decreased and that of treated cotton fabric was increased. Also, the wickability of treated polyester fabric was increased and the wickability of cotton fabric was decreased. (2) Although each finish did not change porosity, the water vapor transport rate of treated polyester fabric was increased and that of treated cotton fabric was decreased slightly. (3) The results of stratum corneum water content measurements showed good agreement with the results of the contact angle and the wickability, i.e., the better the liquid water transport properties are, the less the stratum corneum water contents were resulted. (4) The realtionship of subjective wettedness or comfort and stratum corneum water content was independent. Therefore, it was concluded that human perception on the subjective wettedness or the comfort is affected by the skin contact of wet fabric rather than by the stratum corneum water content.

  • PDF

Comfort and Physical Properties of Linen Blended Knitted Fabrics (Linen 혼방 편성물의 쾌적성 및 물성)

  • Yea, Su Jeong;Song, Wha Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.5
    • /
    • pp.715-723
    • /
    • 2013
  • This develops a new and advanced S/S knitwear material made of linen/bamboo blended yarn. Linen/bamboo knitted fabrics were compared with linen/polyester knitted fabrics in terms of appearance as well as physical and comfort properties. Rib knitted fabrics were remarkably thicker than plain knitted fabrics. Knitted fabrics based on polyester yarns were heavier than those based on bamboo yarn. The porosity decreased in the following order: linen 100% > bamboo 100% > polyester 100%. The drape properties of bamboo 100% and linen/bamboo knitted fabrics were excellent. The pilling resistances of linen 100% and linen/bamboo knitted fabrics were excellent. The highest and lowest air permeability was observed in the case of linen/bamboo knitted fabrics and polyester 100% knitted fabrics, respectively. The instant cool-feeling was enhanced as the bamboo yarns were blended. The thermal conductivity of linen 100% knitted fabrics was the highest and the thermal conductivity of linen/bamboo knitted fabrics was higher than linen/polyester knitted fabrics. Bamboo 100% knitted fabrics showed a higher moisture regain than polyester 100% knitted fabrics. The results confirmed the superior appearance and comfort of a novel S/S knit wear material made of linen/bamboo knitted fabric.

Effect of Porosity Characteristics of Hollow Composite Yarns to the Comfort Property of the Fabrics for the High Emotional Garment (중공 복합사 직물의 기공도 특성이 고감성 의류용 직물의 쾌적특성에 미치는 영향)

  • Kim, Hyun Ah;Kim, Young Soo;Kim, Seung Jin
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.218-229
    • /
    • 2014
  • The wearing comfort of garment is governed by two kinds of characteristics such as moisture and thermal transport properties and mechanical properties of fabrics. The porosity influenced by yarn and fabric structural parameters is known as main factor for wearing comfort of garment related to the moisture and thermal transport properties. This study investigated effect of porosity of composite yarns to the moisture and thermal comfort properties of composite fabrics made of hollow composite DTY and ATY yarns. The theoretical porosity and pore size were inversely proportional to cover factor of fabric, but cover factor was not correlated with experimental pore size. The wicking property of hydrophobic PET filament fabric showed inferior result irrespective of porosity, pore size and cover factor. The drying rate was superior at composite fabrics with high pore size and low cover factor, and pore size was dominant factor for drying property. On the other hand, thermal conductivity of composite fabric was mainly influenced by cover factor and not influenced by porosity. Air permeability was influenced by both porosity and cover factor and was highly increased with increasing porosity and decreasing fabric cover factor.