• Title/Summary/Keyword: comfort index

Search Result 206, Processing Time 0.033 seconds

Evaluation of the Wear Comfort of Outdoorwear by Skin Wettedness Analyses (Skin Wettedness 분석을 통한 아웃도어웨어의 착용 쾌적성 평가)

  • Jeong, Jeong-Rim;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.11 no.6
    • /
    • pp.947-952
    • /
    • 2009
  • The purpose of this study is to analyze skin wettedness($w$) used as the rate index of thermal comfort, and to evaluate the wear comfort of outdoorwear. Skin wettedness is widely used to express the degree of thermal comfort. If skin wettedness exceeds a certain threshold, the body feels damp and discomfort. An experiment which consisted of rest(30 min), exercise(30 min) and recovery(20 min) periods was administered in a climate chamber with 10 healthy male participants. Two kinds of outdoorwears made of 100% cotton fabrics (Control) and specially engineered fabrics having feature of quick sweat absorbency and high speed drying fabric (Functional) were evaluated in the experiment. The condition of climate chamber was controlled according to the thermal insulation of 4 kinds of experimental ensembles(E1~E4). Total sweat loss, sweat loss absorbed into clothing and skin temperature were measured. Skin wettedness was calculated from the ratio of evaporative rate to the maximal evaporative capacity. Skin wettedness of 'Functional' was lower than 'Control' in the 3 kinds of ensembles(E1, E2, E4) because the materials of 'Functional' were composed of quick sweat absorbency and high speed drying fabrics, water vapour permeability and waterproof fabrics.

A Comparison between In-situ PET and ENVI-met PET for Evaluating Outdoor Thermal Comfort

  • Jeong, Da-in;Park, Kyung-hun;Song, Bong-guen
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Purpose: PMV, PET, and similar thermal comfort indices and microclimate modeling have recently become actively used to evaluate thermal comfort. This study will look at pedestrian roads with diverse spatial characteristics on university campus using the ENVI-met model as the base for onsite measurement. Method: The PET was used as the thermal comfort index. The first microclimate measures were collected on September 20, 2014, and the second microclimate measures were collected on June 1, 2015. The ENVI-met model was used at the same time. Result: As a results, Onsite measurement results differed depending on the PET spatial characteristics. The location associated with the most discomfort had a PET of $47.8^{\circ}C$. The spatial characteristics of this place included a with no shade. The most comfortable location had shade, and the PET was $24.6^{\circ}C$. When the ENVI-met model and onsite measurements were compared, similar patterns were found, but with a few differences at specific points; this was due to the limitation of using input materials such as trees, buildings, and covering materials with the ENVI-met model. This factor must be thoroughly considered when analyzing modeling results.

Evaluation of the Thermal Environment and Comfort in Apartment complex using Unsteady-state CFD simulation (Unsteady-state CFD 시뮬레이션을 이용한 여름철 공동주택 외부공간의 온열환경 및 쾌적성 평가)

  • Jeon, Mi-Young;Lee, Seung-Jae;Kim, Ji-Yoeng;Leigh, Seung-Bok;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.67-73
    • /
    • 2010
  • As more and more people desire to live in an apartment complex with a comfortable outdoor space, many construction company became interested in outdoor design. In order to increase the use of outdoor space and create the most pleasant environment, outdoor thermal environment and comfort should be evaluated quantitatively from the design stage. This study utilized ENVI-met 3.1 model to analyze outdoor thermal environment in apartment complex, and evaluated outdoor thermal comfort in 6 points of apartment complex. The physiologically equivalent temperature(PET) was employed as a outdoor thermal index. Playground B had a poor thermal environment with the maximum PET $43^{\circ}C$ (Very hot). Because shading by building and tree didn't affect outdoor thermal environment of playground B. To design comfortable outdoor space from the view point of thermal environment, the factors influencing Mean radiant temperature(MRT) and wind speed should be considered in design stage. Since it is difficult to control outdoor thermal environment compared with indoor environment, we should take into account an assessment for outdoor thermal environment and comfort in outdoor design stage.

Analysis on the Characteristics of the Ride Comfort for High Speed Trains on the High Speed Line/conventional Line (고속선/기존선 운행에 따른 고속철도 차량의 승차감 특성 분석)

  • 김석원;박찬경;김기환;박태원;김영국
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.999-1006
    • /
    • 2004
  • Recently, the ride comfort problem becomes increasingly important because of today's needs for train speedup. The railway has the track irregularities which cause vibrations, such as rail joints, turnout, level crossing, transition corves and super-elevation ramps, and variations in the track level(z-axis) and the gauge(y-axis). In Korea, the service run of the high speed train has been made since the 1st of April, 2004. The commercial high-speed trains must be run on the compound lines which are composed of high-speed line and conventional line. The high speed lines in both Kyoungbu line and Honam line have 57.5% and 33.8%, respectively In this Paper, the ride comfort has been reviewed by the various experimental methods when the high-speed trains are operated on both Kyoungbu line and Honam line. The results show that the high-speed train has no problems from the viewpoint of the comfort ride during the operation on the high speed line and conventional line.

Comparison of Thermal Comfort Performance Indices for Cooling Loads in the Lecture Room - An Correlation of PMV Bnd EDT - (강의실에서의 냉방부하에 따른 열쾌적성 평가지표 비교 - PMV와 EDT의 연관성 -)

  • Noh Kwang-Chul;Oh Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.868-877
    • /
    • 2005
  • We performed the experimental and the numerical study on the comparison of thermal comfort performance indices for cooling loads in the lecture room for 4 cases: Fan coil unit(FCU) or 4-way cassette air-conditioner is respectively operated with the ventilation system or without. We measured the velocity, the temperature distribution and predicted mean vote(PMV) value in the lecture room for 4 different air-conditioning methods. Effective draft temperature(EDT) and PMV were investigated to analyze the characteristics of two thermal comfort indices in the lecture room and to compare their values each other. From the results we knew that there is the similarity between PMV values and EDTs when the room is air-conditioned for cooling loads. It turned out that definition of the control temperature is very important when the EDT is calculated. Finally EDT should not be used to predict the accurate thermal comfort in case that the temperature and humidity are suddenly varied and the zone affected by the solar and inner wall radiation.

Examination on the variation of ride comfort for korean high speed train through on-line test (시운전 시험을 통한 한국형 고속열차의 승차감 변화추세에 관한 연구)

  • Kim, Young-Guk;Mok, Jin-Yong;Kim, Seog-Won;Park, Chan-Kyeong;Kim, Ki-Hwan;Park, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.144-149
    • /
    • 2005
  • In this paper, we introduce the variation of ride characteristics for HSR 350x(Korea High Speed Train project) through on-line test during about 3 years. The concept of term "ride comfort" is equivocal. Generally it is evaluated as the vehicle vibration. The ride comfort for HSR 350x has been assessed by statistical method according to UIC 513R. The testing results show that HSR 350x has no problems from the viewpoint of the comfort ride on the high speed line and conventional line and that 1st and 2nd suspensions play an important role in the ride characteristics for high speed train.

Evaluation of Thermal and Visual Environment for the Glazing and Shading Device in an Office Building with Installed of Venetian Blind (베네시안 블라인드가 적용된 오피스 건물의 외피 투과체 계획을 위한 열·빛 환경 평가에 대한 연구)

  • Kim, Chul-Ho;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.101-109
    • /
    • 2015
  • Purpose: Glazing and shading devices influence a lot on the thermal and visual environment in office buildings. Solar heat and daylight are contrary concept, therefore proper arrangement of thermal and optical performance is needed when designing a glazing and shading devices. The purpose of this study is to examine the conditions of the glazing and shading devices available for promoting the reduction of cooling loads + lighting loads and the improvement in thermal comfort and visual comfort for the summer season in an office building installed with venetian blind. Method: This study established 12 simulation cases which have different glazings and the positions of venetian blind for evaluating different thermal and optical performance. And by using EnergyPlus v8.1 and Window v7.2 program, we quantitatively analyzed cooling loads + lighting loads, thermal comfort and visual comfort in an office building installed with the glazing and shading devices. Result: Consequently, Case 9(Double Low-E+Exterior Blind) is the best arrangement of solar heat gain and daylight influx, thereby becomes the most excellent case of reducing cooling+lighting loads(46.8%) and simultaneously becomes the enhancement case in thermal comfort. Also, DGI(Daylight glare index) under clear sky conditions in summer was evaluated to be 19.6, and thereby satisfied the recommendation level of allowing visual comfort.

Effects for the Thermal Comfort Index Improvement of Park Woodlands and Lawns in Summer (여름철 공원 수림지와 잔디밭의 온열쾌적지수 개선 효과)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.6
    • /
    • pp.21-30
    • /
    • 2014
  • The purpose of this study was to evaluate human thermal comfort in summer by the type of greenery in parks and to explore planning solutions to supply a comfortable thermal environment in parks. The research was conducted in three different land cover types: a park with multi-wide-canopied trees(WOODLAND), park with grass(LAWN) and park with pavement(PAV) as reference sites in Hamyang-Gun SangrimPark. Field measurements of air temperature, relative humidity and wind velocity, short-wave and long-wave radiation from six directions(east, west, north, south, upward and downward) were carried out in the summer of 2014(August 21-23 and 29-30). Mean Radiant Temperature($T_{mrt}$) absorbed by a human-biometeorological reference person was estimated from integral radiation and the calculation of angular factors. The thermal comfort index PET was calculated by Rayman software, UTCI, OUT_SET$^*$ were calculated using the UTCI Calculator and the Thermal Comfort Calculator of Richard DeDear. The results showed that the WOODLAND has the maximum cooling effect during daytime, reduced air temperatures/$T_{mrt}$ by up to $5.9^{\circ}C/35^{\circ}C$ compared to PAV and lowered heat stress values despite increasing relative humidity values and decreasing wind velocity. While the LAWN had very slight cooling effects during daytime, reduced air temperatures/$T_{mrt}$ by up to $0.9^{\circ}C/3^{\circ}C$ compared to PAV, the improvement effects of the thermal comfort index was very slight. However, during nighttime the microclimatic and radiant conditions of WOODLAND, LAWN, and PAV were similar owing to the absence of solar radiation, reduction of wind velocity and an increase in relative humidity. Because the shading and evapotranspiration effects of the WOODLAND were much greater than the evapotranspiration effects of the LAWN, it can be said that the solutions for supplying comfortable thermal environment in parks are to amplify the green volumes rather than green areas. This study was undertaken to evaluate the human thermal comfort in summer of WOODLAND/LAWN parks and to determine the improvement effects of thermal comfort index. These results can contribute to the provision better thermal comfort for park users during park planning.

Actrve Suspension Control using aFrequency-Shaped Performance Index (주파수 형태의 성능지수를 고려한 능동형 현가장치 제어)

  • 김희수;기창두;황원걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.299-304
    • /
    • 1993
  • A 1/4 car model(2 DOF system) is employed to evaluate the performance included a quadratic cost functional in frequency domain. The design procedure of feedback control to optimize the performance index results in a modified Linear-Quadratic-Gaussian problem and cultivates a quite simple control algorithm. Computer simulation result is shown that the LQG method using frequency shaped performance index is outstanding in ride comfort and its response converges to the steady state very rapidly in comparison with the known passive suspension, classical design methods LQR/ and LQG.

  • PDF