• Title/Summary/Keyword: combustion ratio

Search Result 1,728, Processing Time 0.039 seconds

The Past and Future Perspectives of Hydrogen Peroxide as Rocket Propellants (발사체 추진제로서 과산화수소의 과거와 미래전망)

  • Ha, Seong-Up;Kwon, Min-Chan;Seo, Kyoun-Su;Han, Sang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.717-728
    • /
    • 2009
  • In the field of rocket propulsion system hydrogen peroxide has been used as mono-propellant and as the oxidizer of bi-propellants. At the beginning, hydrogen peroxide was used as mono-propellant for thrusters, but later it had been replaced by hydrazine, which has better specific impulse and storability. On the other hand, to drive turbo-pumps, hydrogen peroxide is still being utilized. As the oxidizer of bi-propellants it was used until 1970's and from 1990's hydrogen peroxide once again got back to developer's interest, because one of the recent development purposes of rocket propulsion system is low-cost and ecologically-clean. Until now the storability of hydrogen peroxide has been remarkably improved. The combination of Kerosene/$H_2O_2$ also shows similar accelerating performance to Kerosene/$LO_x$ combination because of higher propellant density and higher O/F ratio, even though the propulsion performance is not as good as the combination of Kerosene/$LO_x$. Moreover, its combustion products are much cleaner than Kerosene/$LO_x$ combination.

A Study on the Source Profile Development for Fine Particles (PM2.5) Emitted from Biomass Burning (Biomass-burning에서 배출되는 미세입자 (PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구)

  • Kang, Byung-Wook;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.384-395
    • /
    • 2012
  • This study was performed to develop the source profiles for fine particles ($PM_{2.5}$) emitted from the biomass burning. The multi-method research strategy included a usage of combustion devices such as field burning, fireplace, and residential wood burning to burn rice straw, fallen leaves, pine tree, and oak tree. The data were collected from multiple sources and measured water-soluble ions, elements, elemental carbon (EC), and organic carbon (OC). From this study, it turned out that OC (34~67%) and EC (1.2~39%) are the major components emitted from biomass burning. In the case of burning rice straw at field burning, OC (66.6%) was the most abundant species, followed by EC (4.3%), $Cl^-$ (3.6%), Cl (2.1%), and $SO^{2-}_4$(1.9%). Burning rice straw, fallen leaves, pine tree, and oak tree at fireplace, the amount of OC was 58.5%, 52.7%, 52.5%, and 61.2%, and that of EC was 1.2%, 18.4%, 36.5%, and 2.7%, respectively. The ratio of OC for the burning of pine tree and oak tree from the residential wood burning device was 56.9% and 34.3%, and that of EC was 25% and 38.6%, respectively. Applying the measured data with respect to the proportion of components emitted from biomass burning to reference model, it turned out that self-diagnosed result was appropriate level, and the result based on the model is in highly corresponding to actual timing of biomass burning.

A Suggestion of the Hydrogen Flame Speed Correlation under Severe Accidents (중대사고시 수소연소에 의한 화염속도 상관식 제시)

  • Kang, Chang-Woo;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • The flame speed correlation considering thermal-hydraulic phenomena under severe accidents is proposed and correction coefficients are defined. This correlation modifies the pressure dependency in Iijima-Takeno correlation and adds the steam suppression effects to it in the anticipated hydrogen and steam concentration ranges under severe accidents. The existing models of flame speed due to hydrogen combustion under severe accidents are based on the experiments which were performed merely at room temperature and atmospheric pressure. They have difficulty in predicting a accurate flame speed in a case of high temperature and pressure during severe accidents. Thus the flame structure is assumed as a prerequisite to the reliable determination of flame speed and theoretical model is developed. To examine the validity, flame speeds in various conditions calculated by this model are compared with those obtained by the calculation of the existing correlations of the codes such as improved HECTR and MAAP. Also the steam suppression ratio is quantified and the steam suppression coefficient is defined as a composition of mixture. Initial temperature and pressure dependencies are investigated and correction coefficents are determined. More experimental studies can be recommended to improve this correlation to its further works.

  • PDF

Characteristics of Partial Oxidation Reforming with Various Sorts of Hydrocarbon Fuel (연료의 종류에 따른 부분산화 반응 특성에 관한 연구)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.46-52
    • /
    • 2009
  • Hydrogen can extend the lean misfire limit to a large extent when it is mixed with conventional fuels for an internal combustion engine. This study is about fuel reforming to produce hydrogen enriched gas as a fuel for engine. Especially gasoline, which consists of numerous hydrocarbon fuels, considered as source of reformed gas. Various hydrocarbons, including commercial fuel were reformed and potentialities of reformed gas on vehicles were accessed. The reforming efficiency and hydrogen yield were observed. Maximum hydrogen yield were found with different gas hourly space velocity(GHSV) and O2/C ratio of reforming conditions.

  • PDF

Effects of Driving Frequency on Propagation Characteristics of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (정상초음파의 교란을 받는 메탄-공기 예혼합화염의 전파특성에 대한 초음파 구동 주파수의 영향)

  • Bae, Dae Seok;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • An experimental study was conducted to scrutinize the influence of the frequency of an ultrasonic standing wave on the variation in the behavior of a methane-air premixed flame. The evolutionary features of the propagating flame were captured by a high-speed camera, and the macroscopic flame behavior, including the flame structure and local velocities, was investigated in detail using a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame were caused by the intervention of the ultrasonic standing wave, which enhanced the combustion reaction. Conclusive evidence for the dependency of the flame behaviors on the driving frequency of the ultrasonic standing wave and equivalence ratio of the reactants is presented.

Assessment of In Vitro Oocyte Maturation in Two Gobiid Fish Species, Chasmichthys dolichognathus and Tridentiger trigonocephalus after Exposure to Benzo[a]pyrene

  • Hwang, In-Joon;Baek, Hea-Ja
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants derived from incomplete combustion of carbons and crude oil. In this study, we investigated the effects of benzo[a]pyrene (B[a]P), a representative PAHs on in vitro sex steroid hormone production and germinal vesicle breakdown (GVBD) using isolated oocytes of longchin goby (Chasmichthys dolichognathus) and chameleon goby (Tridentiger trigonocephalus). Oocytes in diameters of 0.8-0.9 (end vitellogenic stage) and 0.9-1.0 mm (germinal vesicle migratory stage) from longchin goby and 0.5 mm (fully vitellogenic stage) from chameleon goby were used. In GVBD assay, B[a]P at 10 nM stimulated GVBD in the oocytes of 0.8-0.9 mm from longchin goby. B[a]P at 1 nM stimulated GVBD in the oocytes with diameter 0.5 mm from chameleon goby. In steroid production from oocytes of longchin goby, B[a]P at 100 nM decreased testosterone (T) production, B[a]P at 1,000 nM increased estraiol-17 (J (E2) production and 10 and 100 nM increased $17,20{\beta}$-dihydroxy-4-pregnen-3-one ($17{\alpha}20{\beta}P$) production in the oocytes with diameter 0.8-0.9 mm. B[a]P at 1,000 nM increased E2 production, 100 and 1,000 nM increased $17{\alpha}20{\beta}P$ production in the oocytes with diameter 0.9-1.0 mm. In steroid production of oocytes from chameleon goby, B[a]P at 1,000 nM increased $E_2$ production. B[a]P at 10 nM increased $17{\alpha}20{\beta}P$ production. In the ratio of $E_2$ to T ($E_2$/T), B[a]P at 100 and 1,000 nM increased $E_2$/T in the oocytes of longchin goby. B[a]P at 100 nM also increased $E_2$/T in the oocytes of chameleon goby. Taken together, these results suggest that B[a]P have not only weak estrogenic effects but progestogenic effects on oocyte maturation.

Sulfur Isotopic Ratios in Precipitation around Chonju-city, Korea and Its Availability as a Tracer of the Source of Atmospheric Pollutants (전주지역 강수의 황동위원소비와 대기오염원의 추적자로서 그 유용성)

  • Na, Choon-Ki;Kim, Seon-Young;Jeon, Sir-Ryeong;Lee, Mu-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.243-249
    • /
    • 1995
  • In order to investigate the origin of sulfate in rain waters and to evaluate the feasibility of using sulfur isotope method as a tracer of atmospheric pollutants, the sulfur isotopic ratio of sulfate in rain waters collected in Chonju city from October 1994 to March 1995 was monitored and was compared with those of possible sources proposed by previous works. The pH of rain waters shows an intermediate acidic range from 4.45 to 6.88 and their daily variation appears to be well correlated with to the amount of precipitation. The sulfur isotopic ratios of sulfate in rain waters show a highly restricted range from 0.0 to + 1.8‰. The ${\delta}^{34}S$ values are similar to those of soil and pine tree surrounding Chonju city, but largely deviate from those of China. D-parameter($d={\delta}D-8{\delta}^{18}O$) of rain waters varies from 9.4 to 28.8. The values indicate that the rain waters in Chonju city are originated from the rainy front of China continent. All data obtained from this study suggested that sulfate in the rain waters collected in Chonju city was mainly derived from the sulfur dioxide gas emitted by the petroleum combustion. Therefore, sulfur isotopic study for the precipitation provided an excellent tool for environmental assessment in this region and for tracing the source of atmospheric pollutants.

  • PDF

Effects of Hydrogen Sulfide and Siloxane on Landfill Gas Utility Facilities

  • Nam, Sang-Chul;Hur, Kwang-Beom;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.159-164
    • /
    • 2011
  • This study examined the emission characteristics of impure gas-like hydrogen sulfide and siloxane contained in landfill gas (LFG) and investigated the effect of impure gas on LFG utility facilities. As a result of an LFG component analysis from eight landfills in the same environment, hydrogen sulfide averaged 436 ppmv (22-1,211 ppmv), and the concentration of total siloxane averaged 7.95 mg/$m^3$ (1.85-21.18 mg/$m^3$). In case of siloxane concentration by component, the ratio of D4 (average 3.79 mg/$m^3$) and D5 (average 2.64 mg/$m^3$) indicated the highest level. Different kinds of scales were found on the gas air heater (GAH) and inside the boiler. The major component of scale from the GAH was $Fe_2O_3$ of 38.5%, and it was caused by hydrogen sulfide. Other scale was found on the bottom and the wall of the boiler and the scale was silicon dioxide of 92.8% and 98.9%. The silicon dioxide scale was caused by combustion of siloxane. As a result of a scanning electron microscopy analysis, the structure of the silicon dioxide scale from the boiler was an immediate filamentous type. Consequently, as silicon dioxide scale is bulky, such bad effects were worsening, as an interruption in heat conduction, increase in fuel consumption, damage to the boiler by overheating, and clogged emission pipeline could occur in LFG utility facilities.

Numerical Analysis of Off-Gas Flow in Hot Area of the Vitrification Plant (유리화공정 고온영역에서의 방사성 배기체 유동해석)

  • Park, Seung-Chul;Kang, Won-Gu;Hwang, Tae-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2007
  • Appropriate numerical models for the simulation of off-gas flow in hot area of the vitrification plant have been developed in this study. The models have been applied to analyze the effect of design parameters of real plant and numerical analyses have been performed for CCM(Cold Crucible Melter), pipe cooler and HTF(High Temperature Filter). At first, the effect of excess oxygen and the ratio of oxygen distribution on combustion characteristics in the CCM has been studied. Next, solidification behavior of radio nuclide in the pipe cooler has been numerically modeled and scrutinized. Finally, flow pattern in accordance with the location of off-gas entrance of the HTF has been compared.

  • PDF

High functional biodegradable card through annealing (어닐링을 통한 고기능성 생분해성 카드)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.280-286
    • /
    • 2020
  • Cards made from PVC and PET materials do not oxidize or decompose readily, so they are generally incinerated or landfilled after use and cause pollution problems, such as environmental hormones and combustion gases during incineration. In addition, there is a problem of environmental pollution because they are discarded as semi-permanent refuse without being decomposed at landfill. This study attempted to solve this problem using polylactic acid (PLA), which is a representative biodegradable material as a substitute material that can solve the issues with these cards. On the other hand, when the thin card core sheet is made from only PLA material, the physical properties of the material are insufficient, such as the low temperature impact strength, high temperature stability, and poor bending properties, so its use is limited. To solve this problem, the compositional ratio of PLA was reviewed, and the optimal biodegradable compound composition was determined through an examination of the compositions, such as crystallization nucleating agents, additives, and nano compound technology. The high functionalization as a biodegradable card was verified through a laminating process using annealing technology.