• 제목/요약/키워드: combustion ratio

검색결과 1,726건 처리시간 0.026초

모형가스터빈 연소기내 연소불안정성에 대한 연구 (Study on Mechanism of Combustion Instability in a Dump Gas Turbine Combustor)

  • 이종호;이연주;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1284-1291
    • /
    • 2002
  • Combustion instabilities are an important concern associated with lean premixed combustion. Laboratory-scale dump combustor was used to understand the underlying mechanisms causing combustion instabilities. Experiments were conducted at atmospheric pressure and sound level meter was used to track the pressure fluctuations inside the combustor. Instability maps and phase-resolved OH chemiluminescence images were obtained at several conditions to investigate the mechanism of combustion instability and relations between pressure wave and heat release rate. It showed that combustion instability was susceptible to occur at higher value of equivalence ratio (>0.6) as the mean velocity was decreased. Instabilities exhibited a longitudinal mode with a dominant frequency of ∼341.8 Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instabilities occurred. Rayleigh index distribution gave a hint about the location where the strong coherence of pressure and heat release existed. These results also give an insight to the control scheme of combustion instabilities. Emission test revealed that NOx emissions were affected by not only equivalence ratio but also combustion instability.

리엔트런트형 연소실 형상이 디젤기관의 연소특성에 미치는 영향 -연소실 형상비(Bowl직경/Bowl깊이)의 효과- (Effect of Reentrant Type Bowl Geometry on Combustion Characteristics in Diesel Engine -Effect of Aspect Ratio(Bowl Diameter/Bowl Depth)-)

  • 권준박;김형섭;권순익;오재건
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.54-62
    • /
    • 1996
  • Effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.1.diesel engine. The main factor was the aspect ratio (Bowl Diameter/Bowl Depth) of bowl of combustion chamber, and the measured data include the cylinder pressure, engine performance and emissions of the engine using the 4 kinds of the combustion chamber. Experimental results indicate that the effect of dc/H and nozzle protrusion are relatively small and there exists an optimum dc/H according to the combustion conditions. It is also found that the smoke emission is quite sensitive the overall combustion time where the 90 percentage of the combustion heat is released. The smoke mission increases by shortening the 90% combustion time while it decreases by delaying the 90% combustion time.

  • PDF

정적연소기내에서의 분위기 온도 및 압력에 따른 혼합기 분포에 관한 성층화 정도 특성 (Stratified Degree Characteristics on Fuel Mixture According to Ambient Temperature and Pressure in a Constant Volume Combustion Chamber)

  • 이기형;이창식;이창희
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.180-188
    • /
    • 2005
  • It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption technology, it produces much unburned hydrocarbon and soot because of heterogeneous equivalence ratio in the combustion chamber. Therefore, the stratified mixture formation technology is very important to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The local effect of mixture formation according to control air-fuel distribution in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, we found that the flame propagation speed increase with swirl flow and the swirl promotes the formation of fuel and air mixture.

바이오디젤을 적용한 압축착화 엔진에서 EGR율에 따른 연소 및 미세입자 배출물 특성 (Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Biodiesel according to EGR Ratio)

  • 차준표;윤승현;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.98-104
    • /
    • 2010
  • An experimental investigation was conducted to analyze the effects of EGR ratio on the combustion, exhaust emissions characteristics and size distributions of particulate matter in a single cylinder diesel engine with common-rail injection system fueled with biodiesel derived from soybean. In order to analyze the combustion, exhaust emissions and measurement of size distributions of particulate matter were carried out under various EGR ratio which was varied from 20~60% and the results were compared to those of results without EGR. The experimental results show that ignition delay was extended and maximum value of rate of heat release (ROHR) was decreased according to increasing of EGR ratio. In addition, oxidies of nitrogen ($NO_x$) emissions were reduced but soot emissions were increased under increasing of EGR ratio. However, under higher EGR ratio region, soot was slightly decreased. And then the particulate size distribution shows that high exhaust gas temperature restrain the formation of soluble organic fraction (SOF) which were beyond the accumulation mode (100~300nm) and lead to increase of nuclei mode particles.

친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성 (Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant)

  • 전준수;김영문;황오식;고영성;김유;김선진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.134-137
    • /
    • 2009
  • 본 연구에서는 친환경 추진제인 고농도 과산화수소와 케로신을 사용하는 저추력 이원추진제 로켓 엔진의 O/F ratio에 따른 연소 성능 특성을 파악하였다. 연소시험에 사용된 엔진은 6개의 동축 스월 인젝터로 구성된 멀티 인젝터와 연소실, 노즐로 구성되어있으며, 촉매 점화 방식을 사용하였다. 연소 시험은 O/F ratio 3.8에서 11.0까지 변화시켜가며 수행하였다. 연소 시험 결과를 이용하여 특성 속도($C^*$)와 압력 섭동 값을 계산한 결과, 연소 효율은 O/F ratio 5~6 구간에서 가장 좋았으며 모든 구간에서 연소실 압력대비 압력 섭동 값이 5% 미만으로 안정적임을 확인하였다.

  • PDF

모형 가스터빈 연소기의 연소특성 -라디칼 자발광강도와 국소당량비계측에 대하여- (Combustion Characteristics of Model Gas Turbine Combustor -Radical Luminous Intensity and Local Equivalence Ratio Measurement-)

  • 최병륜;김태한
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1064-1071
    • /
    • 1994
  • There are three active radicals which become to the scale of flame diagnostics at the flame front. They are OH, CH and $C_2$ radical. For this, optical measurement system which could monitor simultaneously the luminous waves of three radicals, was constructed. These were analyzed statistically into the cross correlation, coherence and phase. Through such an statistical treatment, combustion characteristics was investigated at the primary zone of gas turbine combustor. The local equivalence ratio was predicted with the ratio of luminuous intensity between CH and $C_2$ radical. This result was matched up to the equivalence ratio calculated from gas composition within 5% error. In general, equivalence ratio was said to be 1.0 at flame front, but it could be increased up to about 1.2 depending on the degree of swirl intensity in case of changing properly the air amount of primary zone.

고효율 순산소 버너의 연소 특성에 관한 실험적 연구 (Experimental study on combustion characteristics of high efficiency oxy-fuel burner)

  • 김세원;안재현;김민수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.57-64
    • /
    • 2002
  • This paper describes the results of a series of experiments executed by using two pilot-scale oxv-fuel burners are designed for maximum capacity of 50,000 kacl/hr, 300,000 kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, swirl vane angle and inlet oxygen temperature on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and inlet oxygen temperature. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, Optimum excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

급속압축장치를 이용한 노말헵탄.이소옥탄 혼합연료의 HCCI 연소특성에 대한 연구 (Experimental Study on HCCI Combustion Characteristics of n-heptane and iso-octane Fuel/air Mixture by using a Rapid Compression Machine)

  • 임옥택
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.167-175
    • /
    • 2011
  • The HCCI engines have been known with high efficiency and low pollution and can be actualized as the new internal combustion engines. However, As for(??) the ignition and combustion depend strongly on the oxidation reaction of the fuel, so it is difficult to control auto-ignition timing and combustion duration. Purpose of this paper is creating the database for development of multi-dimensional simulation and investigating the influence of different molecular structure. In this research, the effect of n-heptane mole ratio in fuel (XnH) on the ignition delay from homogeneous charge compression ignition(HCCI) has been investigated experimentally. By varying the XnH, it was possible to ascertain whether or not XnH is the main resource of ignition delay. Additionally, the information on equivalence ratio for varying XnH was obtained. The tests were performed on a RCM (Rapid Compression Machine) fueled with n-heptane and iso-octane. The results showed that decreasing XnH (100, 30, 20, 10,0), the ignition delays of low temperature reaction (tL) and high temperature reaction (tH) is longer. And the temperature of reaction increases by about 30K. n-heptane partial equivalence ratio (fnH) affect on tL.and TL. When ${\phi}$nH was increased as a certain value, tL was decreased and TL was increased.

SCCI 방법을 이용한 직분식 가솔린 엔진내의 압축비 및 흡기 온도 변화에 따른 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Emission Characteristics According to the Variation of Compression Ratio and Intake Temperature Using Stratified Charge Compression Ignition in a Gasoline Direct Injection Engine)

  • 이창희;이기형;임경빈
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.538-545
    • /
    • 2006
  • Stratified charge compression ignition (SCCI) combustion, also known as HCCI(homogeneous charge compression ignition), offers the potential to improve fuel economy and reduce emission. In this study, SCCI combustion was studied in a single cylinder gasoline DI engine, with a direct injection system. We investigated the effects of air-fuel ratio, intake temperature and injection timing such as early injection and late injection on the attainable SCCI combustion region. Injection timing during the intake process was found to be an important parameter that affects the SCCI region width. We also find it. The effects of mixture stratification and fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

직접분사식 디젤기관 배기배출물 저감을 위한 연소인자의 최적화 (An Optimization of the Combustion Parameters for Reducing Exhaust Emissions in a Direct Injection Diesel Engine)

  • 주봉철;노병준;김규철;이삼구
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.78-85
    • /
    • 2000
  • This study is to develop the diesel engine which has 6 cylinder natural aspiration direct injection type of 7.4$\ell$ with high performance, low emissions and low fuel consumption Finally the developed engine meets Korean `98 exhaust emission regulation for the city bus of heavy duty diesel engine by optimizing the various combustion parameters affecting performance and exhaust emissions. Combustion parameters are the swirl ratio of intake ports, the profile of injection pump`s cam affecting injection pressure, the design features of piston bowl of injection pump`s cam affecting injection pressure, the design features of piston bowl of combustion chamber and injector`s hole size. Through experimental analysis, various combustion parameters are optimized and the results are as follows; the swirl ratio is 2.20, the profile of injection pump`s cam is concave and re-entrant ratio, inner diameter of piston bowl and hole diameter of injector is 0.88,$\psi$64.0mm and $\psi$0.25mm respectively.

  • PDF