• Title/Summary/Keyword: combustion flame

Search Result 2,023, Processing Time 0.024 seconds

Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion (고온공기를 이용한 제트확산화염의 연소특성에 관한 실험)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.

A Study on Combustion Characteristic Methane Fuel according to Torch Volume Variation in a Constant Volume Combustion Chamber (정적연소기에서 토치의 체적 변화에 따른 메탄의 연소특성 파악)

  • Kwon, Soon-Tae;Park, Chan-Jun;Ohm, In-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • Six different size of torch-ignition device were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The torch-ignition device was designed for six different volumes and same orifice size. The combustion pressures were measured to calculate the mass burn fraction and combustion enhancement rate. In addition, the flame propagations were visualized by shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burn fraction were increased when using the torch ignition device. And the combustion duration were decreased. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage. Finally, the initial flame propagation was affected by torch-ignition volume.

A Study on Combustion-Driven Oscillations in a Surface Burner (표면연소기의 연소진동음에 관한 연구)

  • Han, Heekab;Kwon, Youngpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1582-1590
    • /
    • 1998
  • Combustion-driven oscillations in a surface burner have been investigated to clarify their characteristics. A model combustor is made and the oscillation frequencies are measured for various dimensions of the combustor. It is found that there are two modes of oscillations; one is the 'acoustic mode' at high frequencies, associated with the acoustic mode of the combustion system and the other is the 'combustion mode' at low frequencies around 100 Hz, associated with the instability of the flame. Acoustic mode is excited when the surface burner is placed where the phase of particle velocity leads that of acoustic pressure by $90^{\circ}$, for all the combustion conditions. Combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. Combustion mode is greatly influenced by the inlet temperature of the premixed gas. When the inlet temperature is very high, the combustion mode does not occur.

A Study of Flams Structure and Combustion Characteristics in a Premixed Flame Stabilized by a Stramlined Step(I) (유선형스텝에 의해 안정화된 예혼합 화염의 구조와 연소특성에 관한 연구(I))

  • 이재득;최병륜
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 1990
  • In a premixed flame stabilized by a streamlined step, the flame structure and combustion characteristics were investigated to identify the effect of the pressure pulsation in a combustion air. A flame stabilizing limits, visualization, mean temperature, ion current and gas concentration (O$_{2}$, CO$_{2}$, CO, UHC) were measured. With the combustion air of higher pressure pulsation, the development of the mixing layer was fast and wide, the temperature and combustion intensity were higher at arbitrary section. But, the effect was notably decreased with X=150 mm downstream. And a first eddy formation from step edge was earlier. Thus, with the combustion air of higher pressure pulsation, high rate of heat generation was expected.

  • PDF

An Experimental Study on the Measurement of Radicals in Flame for Real Time Combustion Control (실시간 연소제어를 위한 화염 내 라디칼 계측기법 연구)

  • Shin, Myung-Chul;Kim, Se-Won;Yu, Tae-U;Kwon, Seung-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2006
  • The present studying is aimed to establish the relationship between flame chemiluminescence$(OH^*,\;CH^*,\;C_2^*)$ intensities and combustion conditions such as $NO_x$ emission characteristics. Measurements are made for $OH^*,\;CH^*,\;C_2^*$ radicals in gas & light oil diffusion flames. At turbulent nonpremixed combustion mode, the equivalence ratio is varied. The optical emissions were measured by photomultiplier(PMT) using optical band pass filter and spectrometer system. The experimental results showed that the ratio of radicals and $NO_x$ emission characteristics have exponential correlations and equivalence ratio characteristics have linear correlations at this experimental conditions.

  • PDF

Rotary Kiln Flame and Heat Transfer Model - Analysis of Thermal Performance according to Fuel (로터리킬른 화염 및 열전달 모형 - 연료에 따른 열 성능 분석 사례)

  • Choi, Donghwan;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • This paper is to suggest a simple flame model for the analysis of an internal flame of rotary kilns and to present the application cases. Reaction rates in the multi combustion stages of the selected solid fuel were calculated considering the reaction rates with the Arrhenius type equations. In addition, primary and secondary air flow arrangement were considered. As a simple application case, the combustion trends according to the different solid fuels were described. Improved operating conditions as related with the fuel characteristics were shown to be important for the stable combustion characteristics and the performance of the reactors as defined by the exit temperature of the solid materials.

Numerical Study of Flame Stability of Turbulent Combustion in a Dual Combustion Ramjet (이중연소 램제트 엔진의 난류 연소 현상과 화염 안정성)

  • Choi, Jeong-Yeol;Han, Sang-Hoon;Kim, Kyu-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.371-374
    • /
    • 2011
  • High-resolution numerical study is carried out to investigate the flame stability of the turbulent supersonic combustion in a Dual-Combustion Ramjet (DCR). The auto-ignition in a shear layer between hydrogen/carbon-monoxide syngas and air was studied at elevated enthalpy condition. Comparison of a constant area combustor and a combustor with a small divergence angle shows that the supersonic combustion has a characteristics of the lifted flame and its stability is influenced significantly by the compressibility.

  • PDF

A Study on Application of the Photo Detector for Electromagnetic Fuel Injection System of DI Diesel Engine (직분식 디젤기관 전자분사계의 광검출기 적용에 관한 연구)

  • Ra, Jin-Hong;Ahn, Soo-Kil
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.38-46
    • /
    • 1999
  • Increasing stringent emissions legislation and requirement of more effective energy used for diesel engine demand the fine control of the fuel injection system. Recently, the electromagnetic fuel injection control system for diesel engine is tried to realize the optimum diesel combustion by the feel back sensing as optical signal of combustion flame. The photo detectors were made for the feed back signal of electromagnetic fuel injection control for small DI diesel engine. Their abilities to detect defining combustion events were examined. By evaluating test results, it was shown that the wider acceptable optical range design of optical probe window face, and selection of installation position and installation method of detector were important point for improving sensing ability. The detector was shown to detect start and end of diffused combustion and maximum point of flame intensity impossible for pressure sensor, and also shown that the maximum point of flame intensity was 75% of accumulated heat release point within the experimental conditions.

  • PDF

A Study on the Characteristics of Methane-Air Premixture Combustion and Combustion Radicals (1) (밀폐 연소실내의 메탄-공기 예혼합기의 연소 및 라디칼 특성에 관한 연구 (1))

  • Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.659-669
    • /
    • 1996
  • To clarify the effects of equivalence ratio, initial pressure and temperature on the flame propagation and radicals characteristics, a series of the experimental study were conducted in a quiescent methane-air premixture using a constant volume chamber. The development of the flame was visualized following the start of ignition using high speed schlieren photo and radical images by intensified CCD camera. Combustion pressure and ion current were recorded simultaneously according to the experimental conditions which were equivalence ratio with 0.7 to 1.2, initial pressure with 0.08 MPa to 0.40 MPa and initial premixture temperature with 3l3.2K to 403.2K. The results showed that the flame speed by ion current and mass fraction burned by combustion pressure characterized the effects of flame propagation very well. And increased combustion duration due to lean combustion condition that was below equivalence ratio, 0.8 caused cycle variation and decreasing the power of engine.

Experimental Study of Magnesium Dust Combustion Flame on the Temperature Measurement According to Equivalence Ratio and Particle Size (혼합비와 입자 크기에 따른 마그네슘 입자군 연소 화염의 실험)

  • Chon, Hong-Ky;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.157-163
    • /
    • 2011
  • Combustion of magnesium dust particle were fabricated test devices and combustion experiments were carried out. The ignition delay time were measured in change of magnesium particle mass flow rate in premixed flame. According to increasing magnesium particle mass flow rate, ignition delay time were more shorter. In addition, magnesium dust combustion temperature were measured different particle sizes and o/f ratio by two wavelength pyrometry. Dust combustion flame temperature is almost similarly, through to equivalence ratio, confirm the combustion flame temperature range characteristics.

  • PDF