• Title/Summary/Keyword: combustion characteristics

Search Result 3,670, Processing Time 0.03 seconds

Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review (순산소 및 배가스 재순환 연소 기술)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.729-753
    • /
    • 2008
  • Oxy-fuel combustion is a reliable way for the reduction of pollutants, the higher combustion efficiency and the separation of carbon dioxide. The review of recent research trends and the prospects of oxy-fuel combustion were presented. The difference in characteristics among oxy-fuel combustion, conventional air combustion, oxy-fuel combustion with flue gas recirculation (FGR) technique was investigated. Recent experiments of oxy-fuel combustion with/without FGR were surveyed in various ways which are optimized burner design, flame characteristics, the soot emission, the radiation effect, the NOx reduction and the corrosion of combustor. Numerical simulation is more important in oxy-fuel combustion because flame temperature is so high that conventional measurement devices have a restricted application. Equilibrium and non-equilibrium chemical reaction mechanisms for oxy-fuel combustion were investigated. Combustion models suitable for the numerical simulation of non-premixed oxy-fuel flame were surveyed.

Investigation on Combustion Characteristics According to Spark Plug Protrusion in SI Engine (점화플러그 삽입 위치에 따른 SI 엔진의 연소특성에 관한 연구)

  • Han Young-Chool;Kim Dae-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1163-1171
    • /
    • 2004
  • The variation of spark plug location have one of the effects on combustion characteristics. Several parameters of the effect on combustion characteristics are shape of combustion chamber, the spark plug position, turbulence flow and so on. This paper presents an experimental study according to variation of spark plug protrusion and PDA valve which have effects on characteristics of combustion and emission in single cylinder gasoline engine. Also, this paper emphasized that combustion stabilization was making by way of the reinforcement of the turbulent flow with the PDA valve. A feasibility and necessity of combustion pressure based cylinder spark timing control according to spark plug protrusion has been examined. So, this was obtained COV$\_$imep/ and the mass fraction burned(MFB) and the specific fuel consumption(sfc). Using the results of the test, the effects of the variable spark plug location and PDA valve can be improved fuel consumption and be available for the combustion stability.

Study on the Combustion Characteristics of Flammable materials and Combustion Accelerants in an Arson (방화 범죄에서 가연성 물질과 연소촉진제의 연소 특성에 관한 연구)

  • Park, Hye-Jeong;Nam, Ki-Hun;Kim, Kwang-Il
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.7-11
    • /
    • 2017
  • The purpose of this study is to recognize the necessity for the management of the available materials in cases of arsons and to prevent arson gaining an understanding of the combustion characteristics of the flammable materials and combustion accelerants in arson cases. We investigated and analyzed the statistical data on arsons and selected flammable materials (wood, paper, synthetic textiles, synthetic resins), and combustion accelerants (gasoline, diesel, solvent) that are frequently used in cases of arson. We conducted a thermogravimetric analysis to assess the thermal properties of the flammable materials. Also, we conducted burning and flame spread rate tests for the purpose of comparing and analyzing the combustion characteristics of the flammable materials and combustion accelerants.

압축 착화 기관의 연소 변동 특성에 관한 연구

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.69-76
    • /
    • 1987
  • This paper deals with the theoretical prediction and cyclic variation of combustion characteristics in a four stroke, single0cylinder, diesel engine. Theoretical calculations employed a simple empirical model of analysis of energy equation for the thermodynamic system of engine cylinder. The cyclic variation of combustion characteristics is investigated, in term of frequency distribution and standard deviation of peak characteristics, as obtained by combustion analyzer system. The results of theoretical prediction are shown to be in close agreement with the experimental data. The effect of fuel injection timing, engine speed, cooling water temperature, and the compression ratio on the cyclic variations of combustion characteristics were discussed.

  • PDF

Effects of Aspect Ratio on Combustion Characteristics in Diesel Engine (연소실 형상비가 디젤기관의 연소특성에 미치는 영향)

  • Kwon, S.I.;Kwon, J.B.;Kim, H.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.23-32
    • /
    • 1998
  • The effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.I. diesel engine. The main factor was the aspect ratio (Bowl Diameter / Bowl Depth) of bowl of combustion chamber, and the cylinder pressure, engine performance and emissions of the engine using the 4 kinds of the combustion chamber were meadured. Also, the combustion characteristics compared of the experimented and the calculated values which is used by the Hiroyasu's combustion model. The results are as follows; The effect of $d_c/H$ on ignition delay period are small. The smoke is corerelated to the heat release of the premixed and the diffusion combustion, i.g, the smoke decreased by decreasing the premixed combustion or increasing the diffusion combustion on cumulative heat release. The premixed combustion process has more effect than the diffusion combustion on smoke. The formal tendency of $d_c/H$ on engine performance has not appear.

  • PDF

A Study on the Combustion Characteristics of Petrochemical Process By-Product (석유화학 공정부산물의 연소특성에 대한 연구)

  • Lee, Yong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1578-1584
    • /
    • 2002
  • Combustion stability is one of the most important factors that must be considered in burning of heavy fuel oil, especially low-grade oil. This paper describes the combustion characteristics of petrochemical process by- product in the combustion furnace of heavy fuel oil. Main experimental parameters were combustion load, excess 02, fuel preheating temperature and air/fuel ratio. The capacity of CRF(combustion research facility) used in this study was 1.0 ton/hr and the burner is steam jet type suitable far heavy oil combustion and manufactured by UNIGAS in Italy. The fuel used in this experiment were 0.5 B-C, petrochemical process by-product and 3 kinds of 0.5 B-C/process by-product mixtures. The combustion stability was monitored and exhaust gases such as CO, NOx, SOx and particulates were measured with the excess $O_2$ and combustion load. The main purpose of this study is to clarify whether process by-product can be used as a boiler fuel or not in consideration of flame stability and emission properties.

Prediction of Biodiesel Combustion, CO and NOX Emission Characteristics in Accordance with Equivalence Ratio (당량비 변화에 따른 바이오디젤 연소 및 CO, NOX 생성 특성 예측)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • This study was performed to provide the basic information of the combustion, CO and $NO_X$ characteristics of biodiesel in accordance with equivalence ratio. The closed homogeneous reactor model used for the analysis. The analysis conditions were set to 900 K of the initial temperature, 20 atm of initial pressure and equivalence ratio was changes from 0.6 to 1.4. The results of analysis were predicted and compared in terms of combustion temperature, combustion pressure, CO and $NO_X$ emissions. The results of combustion characteristics showed that ignition delay was decreased and the combustion temperature and combustion pressure was increased in accordance with equivalence ratio. CO emission was decreased in lean condition(${\Phi}$ < 1.0), however, CO emission was increased in rich condition(${\Phi}$ > 1.0) because oxygen supply insufficient. $NO_X$ emission showed the largest amount in condition 0.8 of equivalence ratio because the oxygen concentration was sufficient.

The Effects of Injector and Swirler on the Flame Stability in a Model Combustor (모델연소기에서의 화염 안정화에 대한 분사기와 선회기의 영향)

  • Park, Seung-Hun;Lee, Dong-Hun;Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.13-27
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air and the combustion stability leading the reduction of pollutant emissions and the increase of combustion efficiency in gas turbine combustor. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-Pt13%Rh, R-type thermocouple which was 0.2mm thick. Spray and flame was visualized by ICCD(Intensified Charge Coupled Device) camera. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the geometries of injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

A Study on Combustion Characteristics of the Bio-drying SRF in 5 Ton/day Scale Combustion Boiler (5톤/일 규모의 연소보일러에서 Bio-drying 고형연료의 연소특성 연구)

  • Kim, Dong-Ju;Yoon, Young-Sik;Jeong, Bup-Mook;Park, Yeong Su;Seo, Yong-Chil;Lee, Byung-Sun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.600-605
    • /
    • 2018
  • In this study, the combustion characteristics were investigated based on the biodrying solid recovered fuel (SRF) in a 5 Ton/day scale combustion boiler. The composition of the combustion gas containing the biodrying SRF was analyzed, the particulate matter, and its HCl content was determined with the air pollutant process test method. Mass balance, carbon balance, and combustion efficiency were calculated according to the equivalence ratio (ER) method; the energy recovery efficiency of the combustion boiler was also analyzed. The overall combustion efficiency of the biodrying SRF was 97.3 % and the energy recovery efficiency was 80.2%.

Development of Circulating Fluidized Bed Boiler for Refused Derived Fuel (RDF연소를 위한 순환유동층보일러개발)

  • Bae, Dal-Hee;Shun, Do-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.71-77
    • /
    • 2005
  • Combustion of RDF and wastewater sludge was performed in a 0.1MWth bench scale circulating fluidized bed combustor(CFBC), Combustion characteristics of the RDF and sludge mixture demonstrated stable combustion conditions. Component analysis, Combustion characteristics was measured before and after the test, and applications for commercial 1MWe CFBC boiler were prepared. The release of hazardous components such as $SO_2$ and HCl was relatively low values of 50 and 150ppm, respectively.

  • PDF